

Sub1G SoC HW3181 数据手册

- □产品简介
- ☑ 数据手册
- □产品规格

上海东软载波微电子有限公司

2021年10月8日

版权所有©上海东软载波微电子有限公司

产品订购信息

Part NO.	工作电压	FLASH	SRAM	I/O	Timer	RTC	UART	SPI	I2C	ADC	封装类型
HW3181FHNQ	2.2V ~3.6V	36KB	8KB	32	16-bit×4, 32-bit×1	1	3	1	1	12-bit×15ch	QFN48

地 址:中国上海市徐汇区古美路 1515 号凤凰园 12 号楼 3 楼

E-mail: support@essemi.com 电 话: +86-21-60910333 传 真: +86-21-60914991

网 址: http://www.essemi.com

版权所有©

上海东软载波微电子有限公司

本资料内容为上海东软载波微电子有限公司在现有数据资料基础上慎重且力求准确无误编制而成,本资料中所记载的实例以正确的使用方法和标准操作为前提,使用方在应用该等实例时请充分考虑外部诸条件,上海东软载波微电子有限公司不担保或确认该等实例在使用方的适用性、适当性或完整性,上海东软载波微电子有限公司亦不对使用方因使用本资料所有内容而可能或已经带来的风险或后果承担任何法律责任。基于使本资料的内容更加完善等原因,上海东软载波微电子有限公司保留未经预告的修改权。使用方如需获得最新的产品信息,请随时用上述联系方式与上海东软载波微电子有限公司联系。

V1.5 2/352

修订历史

版本	修改日期	更改概要
V1.0	2018-10-12	初版发布
V1.1	2019-1-14	1. 更新 BOR 1.7V 和 2.1V 档位的复位电压上限范围为 2.35V。 2. 在"深度睡眠模式"章节,添加进睡眠模式前清所有中断挂起标志位的备注。 3. 更新 Logo。
V1.2	2019-4-22	1. 更新 MCU 的 IO 端口 VDD=2.5V 条件下的输出特性曲线; 2. 更新功耗参数表中,关于 ADC 模块和 VREF 模块的功耗参数; 3. 修改 BOR 模块特性表中的最低档位的电压范围上限为2.38V; 4. 更新 CLKFLT 旁路控制位的使用说明。
V1.3	2020-3-5	1. 11.1 节频点设置更新 2. HOPSPACE 寄存器说明更新
V1.4	2021-1-6	1. 更新 QFN48 的 POD 图及参数; 2. 删除管脚分配图章节中关于 PA6 端口的应用限制备注; 3. 在寄存器 IAP_ADDR 的描述中添加不建议通过 IAP 操作 FLASH INFO 区的备注; 4. 增强"芯片配置字"章节中对 CFG_DEBUG 位的描述。
V1.5	2021-10-8	更新公司地址。

目 录

内容目录 第 1 章 芯片简介.......17 1.1 1.2 管脚分配图.......22 1.3 1.3.1 管脚说明.......23 1.4 1.4.1 1.4.2 1.4.3 1.4.4 第 2 章 系统控制及操作特性.......27 2. 1 2. 1. 1 2.1.2 2. 2 系统电源.......28 2 2 1 结构框图 28 2.2.2 2.3 概述......28 2.3.1 2.3.2 2.3.3 2.3.4 2.3.5 2. 4 低电压监测(LVD) 32 2.4.1 概述.......32 2.4.2 2. 5 系统低功耗操作模式......34 2.5.1 2.5.2 2.5.3 2.5.4 睡眠模式的唤醒.......35 2. 5. 5 睡眠模式的唤醒时间.......35 2.5.6

2.5.7

2. 6. 1 2. 6. 2

2.6.3

2.6.4

2.6.5

2.6

2.7

4/352

	2. 7. 1	中断和异常	54
	2.7.2	中断和异常向量的分配	55
	2.7.3	中断向量表的重映射	56
	2.7.4	特殊功能寄存器	56
	2. 8	系统控制块(SCB)	65
	2. 8. 1	概述	65
	2. 8. 2	特殊功能寄存器	65
	2. 9	系统定时器(SYSTICK)	69
	2. 9. 1	概述	69
	2. 9. 2	特殊功能寄存器	70
	2. 10	配置字软件控制	72
	2. 11	定时器(T16N/T32N)同步启动关停控制	73
	2. 11. 1	概述	73
	2. 11. 2	特殊功能寄存器	73
第	3 章	存储器资源	75
	3. 1	内部存储器地址映射	75
	3. 2	FLASH 存储器	75
	3. 2. 1	信息区 FLASH	75
	3. 2. 2	程序区 FLASH	78
	3. 2. 3	自编程操作(IAP)	78
	3. 2. 4	特殊功能寄存器	82
	3. 3	数据存储器(SRAM)	86
	3. 3. 1	SRAM 地址映射	86
	3. 3. 2	SRAM 位带扩展	86
	3. 4	外设寄存器	87
	3. 4. 1	外设寄存器映射	87
	3. 4. 2	外设寄存器位带扩展	87
	3. 4. 3	系统控制单元(SCU)寄存器列表	88
	3. 4. 4	GPIO 寄存器列表	88
	3. 4. 5	IAP 寄存器列表	90
	3. 4. 6	ADC 寄存器列表	90
	3. 4. 7	RTC 寄存器列表	90
	3. 4. 8	WDT 寄存器列表	
	3. 4. 9	T16N0/T16N1/T16N2/T16N3 寄存器列表	91
	3. 4. 10	T32N0 寄存器列表	92
	3. 4. 11	UART0/UART1 寄存器列表	
	3. 4. 12	EUART0 寄存器列表	93
	3. 4. 13	SPI0/ SPI1 寄存器列表	
	3. 4. 14	I2C0 寄存器列表	
	3. 5	内核寄存器	
	3. 5. 1	系统定时器(SYSTICK)寄存器列表	
	3. 5. 2	中断控制器(NVIC)寄存器列表	
	3. 5. 3	系统控制块(SCB)寄存器列表	95
第	4 章	输入输出端口(GPIO)	96

	4. 1	概述	96
	4. 2	外部端口中断	97
	4. 3	外部按键中断	98
	4. 4	Buzz 输出	99
	4. 5	特殊功能寄存器	100
第	5 章	外设	125
	5. 1	定时器/计数器	125
	5. 1. 1	16 位定时器/计数器 T16N	125
	5. 1. 2	32 位定时器/计数器 T32N(T32N0)	145
	5. 2	通用异步接收/发送器(UART0/ UART1)	157
	5. 2. 1	概述	157
	5. 2. 2	结构框图	157
	5. 2. 3	UART 数据格式	158
	5. 2. 4	UART 异步发送器	158
	5. 2. 5	UART 异步接收器	161
	5. 2. 6	UART 发送调制功能	163
	5. 2. 7	UART 红外唤醒功能	163
	5. 2. 8	UART 端口极性	163
	5. 2. 9	UART 自动波特率检测	163
	5. 2. 10	UART 空闲帧检测	165
	5. 2. 11	UART 发送暂停和接收暂停	165
	5. 2. 12	特殊功能寄存器	166
	5. 2. 13	UART 应用说明	182
	5. 3	增强型通用异步接收/发送器(EUARTO)	183
	5. 3. 1	概述	183
	5. 3. 2	结构框图	183
	5. 3. 3	EUART 端口复用	183
	5. 3. 4	普通 UART 通讯模式	184
	5. 3. 5	7816 通讯模式的异步接收器和发送器	184
	5. 3. 6	7816 通讯模式的数据格式	185
	5. 3. 7	7816 通讯模式的自动重发功能	185
	5. 3. 8	7816 通讯模式的自动重收功能	186
	5. 3. 9	特殊功能寄存器	186
	5. 3. 10	EUART 应用说明	197
	5. 4	SPI 同步串口通讯控制器(SPI0 /SPI1)	198
	5. 4. 1	概述	198
	5. 4. 2	结构框图	198
	5. 4. 3	SPI 通讯模式	198
	5. 4. 4	SPI 数据格式	198
	5. 4. 5	SPI 帧位宽	200
	5. 4. 6	SPI 同步发送器	200
	5. 4. 7	SPI 同步接收器	201
	5. 4. 8	SPI 通讯控制	202
	5. 4. 9	SPI 延迟接收功能	202

	5. 4. 10	SPI 数据帧发送间隔功能	203
	5. 4. 11	特殊功能寄存器	203
	5. 4. 12	SPI 应用说明	209
	5. 5	I2C 总线串口通讯控制器(I2C0)	210
	5. 5. 1	概述	210
	5. 5. 2	结构框图	210
	5. 5. 3	I2C 总线基本原理	210
	5. 5. 4	I2C 通讯端口配置	212
	5. 5. 5	I2C 时基定时器与 16 倍速采样器	213
	5. 5. 6	I2C 通讯发送器	214
	5. 5. 7	I2C 通讯接收器	215
	5. 5. 8	I2C 通讯控制	215
	5. 5. 9	特殊功能寄存器	218
	5. 5. 10	I2C 应用说明	226
	5. 6	模数转换器(ADC)	227
	5. 6. 1	概述	227
	5. 6. 2	结构框图	227
	5. 6. 3	ADC 基本配置	227
	5. 6. 4	ADC 高精度参考电压	227
	5. 6. 5	ADC 数据转换	227
	5. 6. 6	自动转换比较功能	
	5. 6. 7	特殊功能寄存器	
	5. 7	实时时钟(RTC)	
	5. 7. 1	概述	
	5. 7. 2	RTC 写保护	
	5. 7. 3	时间日期设置	
	5. 7. 4	RTC 中断源	
	5. 7. 5	RTC 计时功能	
	5. 7. 6	特殊功能寄存器	
	5. 8	看门狗定时器(WDT)	
	5. 8. 1	概述	
***	5. 8. 2	特殊功能寄存器	
第	6 章	RF 收发器一芯片状态控制	
	6. 1	POWER DOWN	
	6. 2	DEEP SLEEP	
	6. 3	SLEEP (RC)	
	6. 4	IDLE	
	6. 5	TX	
	6. 6	# LUV + 174 × 271	
<i>_</i>	6. 7	芯片状态切换说明	
弟	7 章	RF 收发器一帧结构	
	7. 1	增强型帧结构	
<i>p</i>	7. 2	直接 FIFO 帧结构	
弟	8 章	RF 收发器一多 PIPE 逻辑通道	258

第	9 章	RF 收发器一自动 ACK 与 ART	259
第	10 章	RF 收发器一数据与控制接口	260
	10. 1	FIFO	260
	10. 1. 1	FIFO 指针	260
	10. 1. 2	FIFO 操作说明	261
	10. 2	中断	263
	10. 2. 1	增强型帧结构中断	265
	10. 2. 2	直接 FIFO 帧结构中断	268
	10. 3	SPI 通信接口	269
	10. 3. 1	SPI 帧格式	269
	10. 3. 2	寄存器访问时序	270
	10. 3. 3	FIFO 访问时序	270
	10. 3. 4	SPI 时序参数	270
	10. 4	GPIO 配置	271
第	11 章	RF 收发器一频点与数据传输参数设置	272
	11. 1	频点设置	272
	11. 1. 1	频点默认设置模式	272
	11. 1. 2	频点直接设置模式	273
	11. 1. 3	跳频接收模式	273
	11. 2	数据传输参数设置	274
	11. 2. 1	数据速率设置	274
	11. 2. 2	发送调制特性设置	274
	11. 2. 3	发送功率设置	274
	11. 2. 4	接收滤波器带宽设置	275
第	12 章	RF 收发器一收发操作流程	276
	12. 1	增强型帧结构收发流程	276
	12. 2	直接 FIFO 帧结构收发流程	278
	12. 3	直接收发 DIRECT 模式	280
	12. 4	连续发送模式	282
第	13 章	RF 收发器一唤醒	283
	13. 1	Wake-up Timer 唤醒	283
	13. 2	GPIO 外部中断唤醒	283
第	14 章	RF 收发器—RC 校准	284
	14. 1	软件校准	284
	14. 2	硬件自动校准	284
第	15 章	RF 收发器—异常状态的检测及复位	285
	15. 1	芯片异常状态检测	285
	15. 2	寄存器与 FIFO 校验功能	285
	15. 3	芯片复位	285
第	16 章	RF 收发器一其它功能与设置	286
	16. 1	白化与 CRC	286
	16. 2	FEC	286
	16. 3	数据编码	287
	16. 4	RSSI	287

	16. 5	载波检测(Carrier Detect)	287
	16. 6	AFC 及晶振的校准功能	287
	16. 7	有效/无效前导检测	288
	16. 8	有效/无效 SFD 检测	288
	16. 9	低功耗接收模式	288
第	17 章	RF 收发器一寄存器	289
	17. 1	寄存器列表	289
	17. 2	寄存器说明	291
第	18 章	封装尺寸图	320
	18. 1	封装尺寸图	320
第	19 章	典型应用原理图	321
	19. 1	典型应用原理图	321
	19. 2	设计应用注意事项	322
第	20 章	电气特性	323
	20. 1	MCU 电气特性	323
	20. 1. 1	最大标称值	
	20. 1. 2	MCU 工作条件	
	20. 1. 3	MCU 功能模块工作电压范围	323
	20. 1. 4	MCU 功耗参数	323
	20. 1. 5	MCU 功能模块功耗特性参数表	325
	20. 1. 6	MCU 输入输出端口特性	326
	20. 1. 7	系统时钟规格	327
	20. 1. 8	ADC 模块特性	327
	20. 1. 9	内部时钟源特性	329
	20. 1. 10	PLL 锁相环特性	329
	20. 1. 11	BOR 模块特性	
	20. 1. 12		
	20. 2	MCU 参数特性图	
	20. 2. 1		
	20. 2. 2	芯片 IO 端口输入特性	
	20. 2. 3	芯片 IO 端口输出特性(普通驱动,PA6~PA13 端口除外)	
	20. 2. 4	芯片 IO 端口输出特性(大电流驱动,PA6~PA13 端口除外)	
	20. 2. 5	芯片 IO 端口输出特性(普通驱动,PA6~PA13 端口)	
	20. 2. 6	芯片 IO 端口输出特性(大电流驱动,PA6~PA13 端口)	
	20. 3	RF 收发器电气特性	
	20. 3. 1	功耗参数	
	20. 3. 2	接收机(RX)参数	
	20. 3. 3	发射机(TX)参数	
	20. 3. 4	频率合成器参数	
	20. 3. 5	振荡器参数	
第	21 章	编程调试接口	
	21. 1	概述	
	21. 2	ISP 编程接口	
	21. 2. 1	通信协议	350

21. 2. 2	操作流程	351
21. 3	SWD 调试接口	351
21. 3. 1	概述	351
21 3 2	SWD 特性	352

图目录

图	1-1	系统内部结构框图	.21
图	1-2	QFN48 封装顶视图(TopView)	. 22
图	2-1	系统电源结构框图	. 28
图	2-2	系统复位电路结构框图	. 28
图	2-3	上电复位时序示意图	.29
图	2-4	掉电复位时序示意图	. 29
图	2-5	外部复位时序示意图	29
图	2-6	MRSTN 复位参考电路图 1	.30
图	2-7	MRSTN 复位参考电路图 2	.30
图	2-8	系统时钟电路结构框图	38
图	2-9	XTAL 振荡器电路结构示意图	39
图	2-10	系统定时器框图	69
图	3-1	内部存储系统分配示意图	75
图	3-2	IAP 操作请求流程图	79
图	3-3	IAP 全擦除操作流程图	80
图	3-4	IAP 页擦除操作流程图	80
图	3-5	IAP 编程操作流程图	81
图	3-6	SRAM 映射图	86
图	3-7	外设存储器分配示意图	87
图	4-1	IO 端口电路结构图	97
图	4-2	外部 PINT0 端口中断电路结构示意图	97
图	4-3	外部按键 KINTO 中断电路结构示意图	98
图	4-4	Buzz 高电平调制输出波形图	99
图	4-5	Buzz 低电平调制输出波形图	100
图	5-1	T16N0 电路结构框图	126
图	5-2	T16N0 计数匹配功能示意图	127
图	5-3	T16N0 捕捉功能示意图	129
图	5-4	T16N0 独立 PWM 输出功能示意图	131
图	5-5	T16N0 互补 PWM 输出功能示意图	132
图	5-6	带死区的 T16N0 互补 PWM 输出功能示意图	132
图	5-11	UART 电路结构图	157
图	5-12	UART 7 位数据格式	158
图	5-13	UART 8 位数据格式	158
图	5-14	UART 9 位数据格式	158
图	5-15	UART0 发送数据流示意图	159
图	5-16	UART0 发送数据操作流程图示例	160
图	5-17	UART0 接收数据流示意图	161
图	5-18	UART0 接收数据操作流程图示例	162
图	5-19	TX0 高电平调制输出波形图	
图	5-21	自动波特率检测时序示意图	164
图	5-22	自动波特率检测错误时序示意图	
	5-23		
		EUARTO 电路结构框图	

V1.5

11/352

日 5-26 7816 通讯検式技吹数据流示意图 184 图 5-27 SPIO 电路结构框图 198 日 5-28 SPIO 时叶上升沿发送、下降沿接收波形示意图 199 图 5-29 SPIO 时叶下阵沿发送、上升沿接收波形示意图 199 图 5-31 SPIO 时叶下阵沿发送、上升沿接收波形示意图 200 图 5-32 SPIO 技数据流示意图 200 图 5-32 SPIO 技数据流示意图 201 图 5-34 SPI 延迟接收功能波形示意图 201 图 5-34 SPI 延迟接收功能波形示意图 203 医 5-35 I2C 电路结构框图 211 图 5-36 I2C 是战品讯协议示意图 211 图 5-37 I2C 主控器写入从功器数据示意图 211 图 5-38 I2C 主控器导及从功器数据示意图 211 图 5-39 开漏输出端口示意图 212 图 5-39 开漏输出端口示意图 213 图 5-41 I2C 发送数据流示意图 215 图 5-42 I2C 建收数据流示意图 215 图 5-43 I2C 运放数据流示意图 216 图 5-44 I2C 应送数据流示意图 216 图 5-41 I2C 发送数据流示意图 217 图 5-43 I2C 起始位波形图 216 图 5-44 I2C 自动身呼波形图 216 图 5-44 I2C 自动身呼波形图 216 图 5-44 I2C 自动身呼波形图 216 图 5-45 I2C 停止位波形图 216 图 5-47 I2C 数据帧使输问隔功能波形示意图 217 图 5-47 I2C 数据帧使的问隔功能波形示意图 217 图 5-47 I2C 数据帧使的问隔功能波形示意图 217 图 5-47 I2C 数据帧中介示意图 217 图 5-48 I2C 中域 下表面图 227 图 5-48 I2C 中域 下表面图 227 图 5-49 ADC 内部结构图 227 图 5-51 ADC 数据转换即广示意图 218 图 6-2 芯片上电进入发送模式示意图 255 图 7-1 增强型帕结构示意图 255 图 7-1 增强型帕结构示意图 256 图 7-2 直接 FIFO 帧结构示意图 256 图 7-2 直接 FIFO 帧结构示意图 256 图 7-2 直接 FIFO 帧结构示意图 256 图 10-1 FIFO 控制示意图 266 图 10-2 两种帧结构技像大学音操作示意图 267 图 10-3 直接 FIFO 帧结构对表像 256 图 10-5 IRQ 中断结由示意图 266 图 10-1 IPC 控制可意图 266 图 10-1 PTX 自动重传情况 1中断示意图 266 图 10-1 PTX 自动重传情况:中断示意图 266 图 10-1 PTX 自动重校情况:中断示意图 266 图 10-1 PTX 自动重校技术形成 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	图	5-25	7816 通讯模式发送数据流示意图	184
图 5-28 SPIO 时钟上升沿发送、下降沿接收波形示意图 199 图 5-29 SPIO 时钟下降沿发送、上升沿接收波形示意图 199 图 5-29 SPIO 时钟下降沿发送、上升沿接收波形示意图 200 图 5-31 SPIO 时钟下降沿接收,上升沿发送波形示意图 200 图 5-33 SPIO 接收数据流示意图 201 图 5-34 SPI 延送城牧功能被形示意图 201 图 5-34 SPI 延送城牧功能被形示意图 203 图 5-35 I2C 电路站构框图 211 图 5-36 I2C 总线通讯协议示意图 211 图 5-37 I2C 生空器写入从动器数据示意图 211 图 5-39 开漏输出端口示意图 212 图 5-39 开漏输出端口示意图 213 图 5-39 开漏输出端口示意图 213 图 5-39 开漏输出端口示意图 213 图 5-41 I2C 发送数据流示意图 214 图 5-42 I2C 接收数据流示意图 215 图 5-43 I2C 电始位波形图 216 图 5-44 I2C 自动当呼波形图 216 图 5-45 I2C 停止位波形图 216 图 5-47 I2C 数据帧传输问隔功能波形示意图 217 图 5-48 I2C 时钟线下拉等待波形示意图 217 图 5-48 I2C 时钟线下拉等待波形示意图 217 图 5-48 I2C 时钟线下拉等待波形示意图 218 图 5-49 ADC 内部结构图 227 图 5-51 ADC 数据转换时序示意图 (ADC_CON1 寄存器的 SMPS=1,硬件控制采样) 229 图 6-1 RF 收发器状态控制示意图 255 I2C 序 Le 进入发达模式示意图 255 I2C 序 Le 进入发达模式示意图 255 I2C 序 Le 进入接收模式示意图 256 I2C 芯片上电进入接收模式示意图 256 I2C 两种帧结构模式下 FIFO 结构 256 I2C 两种帧结构模式下 FIFO 结构 256 I2C 两种结构模式下 FIFO 结构 256 I2C 两种结构模式下 FIFO 结构 256 I2C 两种统结构模式下 FIFO 结构 256 I2C 两种统结构或 256 I2C 两种统结构模式下 FIFO 结构 256 I2C 两种统结构模式下 FIFO 结构 256 I2C 两种统由示意图 256 I2C 中断示意图 256 I2C 中断示意图 256 I2C 中断 256 I2C P2C I2C P2C I2C P2C P2C P2C P2C P2C P2C P2C P2C P2C P	图	5-26	7816 通讯模式接收数据流示意图	184
图 5-29 SP10 时钟下降沿发达,上升沿接收波形示意图 200 图 5-31 SP10 时钟下降沿接收,上升沿发送波形示意图 200 图 5-32 SP1 发达数据流示意图 200 图 5-32 SP1 发达数据流示意图 201 图 5-34 SP1 延迟接收功能波形示意图 203 SP10 接收数据流示意图 201 图 5-34 SP1 延迟接收功能波形示意图 203 图 5-35 I2C 电路结构框图 210 图 5-36 I2C 总线通讯协议示意图 211 图 5-36 I2C 总线通讯协议示意图 211 图 5-36 I2C 总线通讯协议示意图 211 图 5-37 I2C 主控器写入从功器数据示意图 211 图 5-39 开漏输出端口示意图 212 图 5-39 开漏输出端口示意图 213 图 5-41 I2C 发送数据流示意图 214 图 5-42 I2C 接收数据流示意图 215 图 5-42 I2C 接收数据流示意图 216 图 5-45 I2C 使业位波形图 216 图 5-45 I2C 使业位波形图 216 图 5-45 I2C 应始位波形图 216 图 5-46 I2C 回动手呼波形图 216 图 5-47 I2C 数据帧传输间隔功能波形示意图 217 图 5-47 I2C 数据帧传输间隔功能波形示意图 227 图 5-51 ADC 数据转换时序示意图 (ADC_CON1 寄存器的 SMPS=1,硬件控制采样) 229 图 6-1 RF 收发器状态控制示意图 253 图 6-2 芯片上电进入发送模式示意图 256 图 7-1 增强型帧结构示意图 257 图 6-3 芯片上电进入发送模式示意图 258 图 7-1 增强型帧结构示意图 258 图 7-1 增强型帧结构示意图 259 图 6-3 芯片上电进入设送模式示意图 258 图 7-1 增强型帧结构表示序图 258 图 7-2 直接 FIFO 帧结构交送单空操作示意图 258 图 10-1 FIFO 控制示意图 268 图 10-5 IRQ 中断端相示意图 268 图 10-5 IRQ 中断端相示意图 269 I10-1 PRX 自动重传情况 2 中断示意图 268 I10-1 PRX 自动重传情况 2 中断示意图 268 I10-1 PRX 自动重传情况 3 中断示意图 268 I10-1 PRX 自动重传情况 3 中断示意图 269 I10-10 PTX 自动重传情况 3 中断示意图 266 I10-11 PRX 自动重传情况 3 中断示意图 266 I10-11 PRX 自动重传情况 3 中断示意图 266 I10-11 PRX 自动重传情况 3 中断示意图 266 I10-12 PTX 自动重传情况 3 中断示意图 266 I10-13 直接 FIFO 帧结构中断示意图 267 I10-12 ACK 使能情况下 NOACK 功能中断示意图 268 I10-13 直接 FIFO 帧结构中断示意图 269 I10-11 PRX 自动重传形式 3 中断示意图 269 I10-11 PRX 自动重传情况 3 中断示意图 269 I10-11 PRX 自动重传形式 3 中断示意图 269 I10-11 PRX 自动重传形式 3 中断示意图 269 I10-11 PRX 自动重传形式 3 中断示意图 269 I10-12 ACK 使能情况 NOACK 功能中影形表 269 I10-11 PRX 自动重传形式 3 中标示意图 269 I10-12 ACK 使能情况 5 中标示意图 269 I10-13 直接 FIFO 帧结构中断示意图 269 I10-14 ACK 使能情况 5 中标示意图 269 I10-14 ACK 使能力量 5 中标示意图 269 I10-14 ACK 使能力量 5 中标示意图 269 I10-14 ACK 使能	图	5-27	SPI0 电路结构框图	198
图 5-31 SP10 时钟下降沿接收,上升治发送波形示意图 200 图 5-32 SP1 发送数据流示意图 200 图 5-32 SP1 发送数据流示意图 201 图 5-33 SP10 接收数据流示意图 201 图 5-34 SP1 延迟接收功能波形示意图 203 图 5-35 I2C 电路结构框图 210 图 5-36 I2C 总线通讯协议示意图 211 图 5-37 I2C 主控器写入从功器数据示意图 211 图 5-37 I2C 主控器词入从功器数据示意图 212 图 5-38 I2C 主控器读取从功器数据示意图 212 图 5-38 I2C 生控器读取从功器数据示意图 212 图 5-34 I2C 支送数据流示意图 213 图 5-41 I2C 发送数据流示意图 215 图 5-42 I2C 接收数据流示意图 216 图 5-42 I2C 自动寻呼波形图 216 图 5-43 I2C 起始位波形图 216 图 5-44 I2C 自动寻呼波形图 216 图 5-45 I2C 停止位波形图 216 图 5-46 I2C 应答延迟功能波形示意图 217 图 5-47 I2C 数据帧传输间隔户能波形示意图 227 图 5-48 I2C 时钟线下拉等待波形示意图 218 5-48 I2C 时钟线下拉等待波形示意图 227 图 5-48 I2C 时进入发达模式示意图 227 图 5-48 I2C 时进入发达模式示意图 255 图 6-3 芯片上电进入发达模式示意图 255 图 6-1 RF 收发器状态控制示意图 255 图 6-1 RF 收发器状态控制示意图 255 图 6-2 芯片上电进入接收模式示意图 255 图 6-1 中于下直、接下FPO 帧结构示意图 256 图 10-1 FPO 控制示意图 256 图 10-1 FIFO 校结构技论学学操作示意图 256 图 10-1 FIFO 校结构技论学学操作示意图 268 图 10-1 IFFO 校结构技论学学操作示意图 268 图 10-1 IFFO 校结构技论学学操作示意图 268 图 10-1 IFFO 校结构技论学节操作示意图 268 图 10-1 IFFO 校结构技论学学操作示意图 268 图 10-1 PFX 自动重传情况 1 中断示意图 266 图 10-10 PTX 自动重传情况 2 中断示意图 266 图 10-10 PTX 自动重传情况 3 中断示意图 266 图 10-10 PTX 自动重传情况 3 中断示意图 266 图 10-11 PTX 自动重传情况 3 中断示意图(重传起时,重传次数为 2) 266 图 10-10 PTX 自动重传情况 3 中断示意图(重传起时,重传次数为 2) 266 图 10-11 PTX 自动重传情况 3 中断示意图(重传起时,重传次数为 2) 266 图 10-11 PTX 自动重传情况 3 中断示意图(重传起时,重传次数为 2) 266 图 10-11 PTX 自动重传形式 3 中断示意图(重传起时,重传次数为 2) 266 图 10-11 PTX 自动重传形式 3 中断示意图(267 图 10-12 ACK 使能行况 5 PM 2 PM	图	5-28	SPI0 时钟上升沿发送,下降沿接收波形示意图	199
图 5-32 SPI 发达数据流示意图 201 图 5-33 SPIO 接收数据流示意图 201 图 5-34 SPI 延迟核收功能液形示意图 203 图 5-34 SPI 延迟核收功能液形示意图 203 图 5-36 I2C 电路结构框图 210 图 5-36 I2C 电路结构框图 210 图 5-37 I2C 主控器诗入从动器数据示意图 211 图 5-37 I2C 主控器诗入从动器数据示意图 212 图 5-39 H漏输出端口示意图 213 图 5-39 H漏输出端口示意图 213 图 5-49 I2C 技数数据流示意图 214 图 5-41 I2C 发达数据流示意图 215 图 5-43 I2C 电始价波形图 216 图 5-44 I2C 自动寻呼波形图 216 图 5-44 I2C 自动寻呼波形图 216 图 5-45 I2C 停止位波形图 216 图 5-46 I2C 应答延迟功能波形示意图 217 图 5-47 I2C 发掘帧传输间隔页能波形示意图 217 图 5-48 I2C 时钟线下拉等符波形示意图 227 图 5-49 ADC 内部结构图 227 图 5-49 ADC 内部结构图 227 图 5-49 ADC 内部结构图 250 图 7-1 增强型帧结构示意图 255 图 6-2 芯片上电进入技线模式示意图 255 图 6-3 芯片上电进入技线模式示意图 256 图 7-1 增强型帧结构示意图 256 图 7-1 增强型帧结构示意图 257 图 5-1 4 PIPE 通讯示意图 256 图 7-1 增强型帧结构表意图 257 图 5-1 10-1 增强型帧结构表意图 256 图 7-1 增强型帧结构表意图 256 图 7-1 增强型帧结构表意图 256 图 7-1 增强型帧结构表意图 256 图 7-1 均强型帧结构表音图 256 图 10-2 两种帧结构模式下FIFO 结构 256 图 10-1 TPC 对的域体的模式中断示意图 260 图 10-2 两种帧结构技改生消费作示意图 260 图 10-1 IPC 对的域体的设定半消费作示意图 262 图 10-1 1PTX 自动重传情况 1 中断示意图 266 图 10-9 PTX 自动重传情况 1 中断示意图 266 图 10-9 PTX 自动重传情况 1 中断示意图 266 图 10-1 PTX 自动重传情况 1 中断示意图 266 图 10-1 PTX 自动重传情况 1 中断示意图 266 图 10-10 PTX 自动重传情况 1 中断示意图 266 图 10-11 PRX 自动重使中断示意图 266 图 10-11 PRX 自动重使中断示意图 266	图	5-29	SPI0 时钟下降沿发送,上升沿接收波形示意图	199
图 5-33 SPIO 接收数据流示意图 201 图 5-34 SPI 建迟接收功能波形示意图 203 图 5-35 I2C 电路结构框图 210 图 5-36 I2C 总线通讯协议示意图 211 图 5-37 I2C 主控需导入从动器数据示意图 211 图 5-37 I2C 主控需诗取从动器数据示意图 212 图 5-38 I2C 主控器诗取从动器数据示意图 212 图 5-39 开漏输出端口示意图 213 图 5-41 I2C 发送数据流示意图 214 图 5-42 I2C 接收数据流示意图 214 图 5-44 I2C 自动寻呼波形图 216 图 5-45 I2C 使止位波形图 217 I2C 数据帧传输问隔功能波形示意图 217 图 5-48 I2C 时钟线下拉等待波形示意图 217 图 5-48 I2C 时钟线下拉等待波形示意图 217 图 5-48 I2C 时钟线下拉等待波形示意图 218 图 5-49 ADC 内部结构图 227 图 5-51 ADC 数据转换时序示意图 (ADC_CON1 寄存器的 SMPS=1, 硬件控制采样) 229 图 6-1 RF 收发器状态控制示意图 256 图 6-2 芯片上电进入接收模式示意图 256 图 7-1 增强型帧结构示意图 256 图 10-1 FIFO 控制示意图 258 图 10-1 FIFO 控制示意图 268 图 10-1 FIFO 拉结构接收半满操作示意图 268 图 10-1 FIFO 拉结构接收半满操作示意图 268 图 10-1 FIFO 如重传情况 1 中断示意图 269 图 10-10 PTX 自动重传情况 3 中断示意图 269 图 10-11 PRX 自动重使情况 3 中断示意图 269 图 10-11 PRX 自动重使描记 4 PFX 自动重使制示意图 269 图 10-11 PRX 自动重使式 4 PFX 自动重使 4 PFX 自动 4 PFX	图	5-31	SPI0 时钟下降沿接收,上升沿发送波形示意图	200
图 5-34 SPI 延迟接收功能波形示意图 203 图 5-35 12C 电路结构框图 210 图 5-36 12C 总线通讯协议示意图 211 图 5-37 12C 主控器写入从动器数据示意图 211 图 5-37 12C 主控器写入从动器数据示意图 212 图 5-38 12C 主控器写入从动器数据示意图 212 图 5-39 开漏输出端口示意图 213 图 5-41 12C 发送数据流示意图 214 图 5-42 12C 接收数据流示意图 215 图 5-43 12C 起始仪波形图 216 图 5-44 12C 自动寻呼波形图 216 图 5-45 12C 应存证迟功能波形示意图 216 图 5-44 12C 自动寻呼波形图 216 图 5-44 12C 自动寻呼波形图 216 图 5-45 12C 数据帧传输间隔功能波形示意图 217 图 5-47 12C 数据帧传输间隔功能波形示意图 218 图 5-48 12C 时钟线下拉等符波形示意图 218 图 5-49 ADC 内部结构图 227 图 6-1 RF 收发器状态控制示意图 229 图 6-1 RF 收发器状态控制示意图 256 图 7-1 增强型帧结构示意图 256 图 7-1 增强型帧结构示意图 256 图 7-2 直接 FIFO 帧结构示意图 256 图 7-1 增强型帧结构示意图 256 图 7-1 增强型帧结构示意图 256 图 7-1 增强型帧结构示意图 256 图 7-2 直接 FIFO 帧结构示意图 256 图 7-1 增强型帧结构示意图 256 图 7-2 直接 FIFO 帧结构示意图 256 图 7-1 增强型帧结构示意图 256 图 7-2 直接 FIFO 帧结构表文章 图 256 图 10-1 FIFO 控制示意图 258 图 10-1 FIFO 射结构接收半满操作示意图 258 图 10-1 FIFO 射结构接收半满操作示意图 258 图 10-1 互接 FIFO 帧结构接收半满操作示意图 258 图 10-1 PTX 自动重传情况 1 中断示意图 258 图 10-1 ACK 使能话常证中断示意图 258 图 10-1 PTX 自动重传情况 2 中断示意图 258 图 10-1 PTX 自动重传情况 3 中断示意图 256 图 10-10 PTX 自动重传情况 3 中断示意图 256 图 10-10 PTX 自动重传情况 3 中断示意图 256 图 10-11 PTX 自动重传情况 3 中断示意图 256 图 10-12 ACK 使能情况下 NOACK 功能中断示意图 258 图 10-13 直接 FIFO 帧结构中断示意图 258 图 10-13 直接 FIFO 帧结构中断示意图 258 图 10-14 ACK 使能情况下 NOACK 功能中断示意图 258 图 10-13 直接 FIFO 帧结构中断示意图 258 图 10-14 ACK 使能情况下 NOACK 功能中断示意图 258 图 10-13 直接 FIFO 帧结构中断示意图 258 图 10-13 直接 FIFO 帧结构中断示意图 258 图 10-13 直接 FIFO 帧结构中断示意图 258 图 10-14 ACK 使能情况下 NOACK 功能中断示意图 258 图 10-13 直接 FIFO 帧结构中断示意图 258 图 10-13 直接 FIFO 帧结构中断示意图 258 图 10-13 直接 FIFO 帧结构中断示意图 258 图 10-14 ACK 使能情况下 NOACK 功能中断示意图 258 图 10-13 直接 FIFO 帧结构中断示意图 258 图 10-13 直接 FIFO 帧结构中断示意图 258 图 10-13 直接 FIFO 帧结构中断示意图 258 图 10-13 直接 FIFO 帧结构中标示意图 258 图 10-13 直接 FIFO 帧结构 20 中标示记述 20 中标记述 20	图	5-32	SPI 发送数据流示意图	200
图 5-35 I2C 电路结构框图	图	5-33	SPI0 接收数据流示意图	201
図 5-36 2C 总线通讯协议示意图	图	5-34	SPI 延迟接收功能波形示意图	203
图 5-37 12C 主控器写入从动器数据示意图 212 图 5-38 12C 主控器读取从动器数据示意图 213 图 5-41 12C 发送数据流示意图 214 图 5-42 12C 接收数据流示意图 215 图 5-43 12C 应好效数据流示意图 216 图 5-44 12C 自动寻呼波形图 216 图 5-44 12C 自动寻呼波形图 216 图 5-45 12C 停止位波形图 216 图 5-46 12C 应答延迟功能波形示意图 217 图 5-47 12C 数据帧传输间隔功能波形示意图 217 图 5-48 12C 时钟线下拉等待波形示意图 218 图 5-49 ADC 内部结构图 227 图 5-51 ADC 数据转换时序示意图 (ADC_CON1 寄存器的 SMPS=1, 硬件控制采样) 229 图 6-1 RF 收发器状态控制示意图 253 图 6-2 芯片上电进入接收模式示意图 255 图 6-3 芯片上电进入发送模式示意图 255 图 7-1 增强型帧结构示意图 255 图 7-2 直接 FIFO 帧结构示意图 256 图 7-2 直接 FIFO 帧结构示意图 260 图 10-2 两种帧结构技术下 FIFO 结构 261 图 10-2 两种帧结构体校长平清操作示意图 262 图 10-3 直接 FIFO 帧结构技术下 序列 262 图 10-4	图	5-35	I2C 电路结构框图	210
图 5-38 12C 主控器读取从动器数据示意图 212 图 5-41 12C 发送数据流示意图 214 图 5-42 12C 接收数据流示意图 215 图 5-43 12C 起始位波形图 216 图 5-44 12C 自动寻呼波形图 216 图 5-44 12C 自动寻呼波形图 216 图 5-44 12C 停止位波形图 216 图 5-44 12C 应答延迟功能波形示意图 217 图 5-45 12C 应答延迟功能波形示意图 217 图 5-46 12C 时钟线下拉等待波形示意图 217 图 5-47 12C 数据帧传输间隔功能波形示意图 218 图 5-48 12C 时钟线下拉等待波形示意图 218 图 5-49 ADC 数据转换时序示意图 (ADC_CON1 寄存器的 SMPS=1, 硬件控制采样) 229 图 5-11 RP 收费米水态控制示意图 255 图 6-1 RF 收支楼水态控制示意图 255 图 6-2 芯片上电进入发送模式示意图 255 图 6-3 芯片上电进入发送模式示意图 255 图 7-1 增强型帧结构示意图 255 图 7-2 直接 FIFO 帧结构示意图 266 图 10-1 FIFO 控制小壳宽图 268 图 10-2 两种帧结构技术下序区 260 图 10-3 直接 FIFO 帧结构成水下流域、标准 262 图 10-6 AC	图	5-36	I2C 总线通讯协议示意图	211
图 5-39 开編输出端口示意图 213	图	5-37	I2C 主控器写入从动器数据示意图	212
图 5-41 12C 发送数据流示意图 214 图 5-42 12C 接收数据流示意图 215 图 5-43 12C 起始位波形图 216 图 5-44 12C 自动寻呼波形图 216 图 5-45 12C 应答延迟功能波形示意图 217 图 5-46 12C 应答延迟功能波形示意图 217 图 5-47 12C 数据帧传输间隔功能波形示意图 217 图 5-48 12C 时钟线下拉等待波形示意图 218 图 5-49 ADC 內部结构图 227 图 5-51 ADC 数据转换时序示意图 (ADC_CON1 寄存器的 SMPS=1, 硬件控制采样) 229 图 6-1 RF 收发器状态控制示意图 253 图 6-2 芯片上电进入发送模式示意图 255 图 7-1 增强型域结构示意图 255 图 7-2 直接 FIFO 帧结构示意图 256 图 7-2 直接 FIFO 帧结构示意图 258 图 10-1 FIFO 控制示意图 260 图 10-2 两种帧结构模式下 FIFO 结构 261 图 10-3 直接 FIFO 帧结构发送半空操作示意图 262 图 10-4 直接 FIFO 帧结构技收率消操作示意图 262 图 10-5 IRQ 中断输出示意图 265 图 10-6 ACK 使能计况中断示意图 265 图 10-9 PTX 自动重传情况 1 中断示意图 265 图 10-9	图	5-38	I2C 主控器读取从动器数据示意图	212
图 5-42 I2C 接收数据流示意图 215 图 5-43 I2C 起始位波形图 216 图 5-44 I2C 自动寻呼波形图 216 图 5-45 I2C 停止位波形图 216 图 5-46 I2C 应答延迟功能波形示意图 217 图 5-47 I2C 数据帧传输间隔功能波形示意图 217 图 5-48 I2C 时钟线下拉等待波形示意图 218 图 5-49 ADC 内部结构图 227 图 5-51 ADC 数据转换时序示意图 (ADC_CON1 寄存器的 SMPS=1, 硬件控制采样) 229 图 6-1 RF 收发器状态控制示意图 255 图 6-2 芯片上电进入发送模式示意图 255 图 6-3 芯片上电进入接收模式示意图 255 图 7-1 增强型帧结构示意图 256 图 7-2 直接 FIFO 帧结构示意图 257 图 8-1 4 路 PIPE 通讯示意图 260 图 10-1 FIFO 控制示意图 260 图 10-2 两种帧结构模式下 FIFO 结构 261 图 10-3 直接 FIFO 帧结构发送半空操作示意图 262 图 10-4 直接 FIFO 帧结构接收半满操作示意图 262 图 10-5 IRQ 中断输出示意图 265 图 10-6 ACK 使能正常通讯中断示意图 265 图 10-7 ACK 使能正常通讯中断示意图 266 图 10-8 PTX 自动重传情况 2 中断示意图 266 图 10-10 PTX 自动重传情况 3 中断示意图 266 图 10-11 PRX 自动重传情况 3 中断示意图 266 图 10-12 ACK 使能情况下 NOACK 功能中断示意图 268 图 10-13 直接 FIFO 帧结构中断示意图<	图	5-39	开漏输出端口示意图	213
图 5-43	图	5-41	I2C 发送数据流示意图	214
图 5-44 I2C 自动寻呼波形图216图 5-45 I2C 停止位波形图216图 5-46 I2C 应答延迟功能波形示意图217图 5-47 I2C 数据帧传输间隔功能波形示意图217图 5-48 I2C 时钟线下拉等待波形示意图218图 5-49 ADC 内部结构图227图 5-51 ADC 数据转换时序示意图 (ADC_CON1 寄存器的 SMPS=1, 硬件控制采样)229图 6-1 RF 收发器状态控制示意图253图 6-2 芯片上电进入发送模式示意图255图 6-3 芯片上电进入接收模式示意图255图 7-1 增强型帧结构示意图256图 7-2 直接 FIFO 帧结构示意图257图 8-1 4 路 PIPE 通讯示意图258图 10-1 FIFO 控制示意图261图 10-2 两种帧结构模式下 FIFO 结构261图 10-3 直接 FIFO 帧结构发送半空操作示意图262图 10-4 直接 FIFO 帧结构发域中消操作示意图262图 10-5 IRQ 中断输出示意图262图 10-6 ACK 不使能情况中断示意图265图 10-7 ACK 使能正常通讯中断示意图265图 10-8 PTX 自动重传情况 1 中断示意图265图 10-9 PTX 自动重传情况 2 中断示意图266图 10-10 PTX 自动重传情况 3 中断示意图266图 10-11 PRX 自动重收中断示意图266图 10-12 ACK 使能情况下 NOACK 功能中断示意图268图 10-12 ACK 使能情况下 NOACK 功能中断示意图268图 10-13 直接 FIFO 帧结构中断示意图268图 10-13 直接 FIFO 帧结构中断示意图268	图	5-42	I2C 接收数据流示意图	215
图 5-45 I2C 停止位波形图216图 5-46 I2C 应答延迟功能波形示意图217图 5-47 I2C 数据帧传输间隔功能波形示意图217图 5-48 I2C 时钟线下拉等待波形示意图218图 5-49 ADC 内部结构图227图 5-51 ADC 数据转换时序示意图 (ADC_CON1 寄存器的 SMPS=1, 硬件控制采样)229图 6-1 RF 收发器状态控制示意图253图 6-2 芯片上电进入发送模式示意图255图 6-3 芯片上电进入接收模式示意图255图 7-1 增强型帧结构示意图256图 7-2 直接 FIFO 帧结构示意图257图 8-1 4 路 PIPE 通讯示意图258图 10-1 FIFO 控制示意图260图 10-2 两种帧结构模式下 FIFO 结构261图 10-3 直接 FIFO 帧结构发送半空操作示意图262图 10-4 直接 FIFO 帧结构接收半满操作示意图262图 10-5 IRQ 中断输出示意图263图 10-6 ACK 不使能情况中断示意图265图 10-7 ACK 使能正常通讯中断示意图265图 10-8 PTX 自动重传情况 1 中断示意图265图 10-9 PTX 自动重传情况 2 中断示意图266图 10-10 PTX 自动重传情况 3 中断示意图266图 10-11 PRX 自动重收中断示意图266图 10-12 ACK 使能情况下 NOACK 功能中断示意图268图 10-13 直接 FIFO 帧结构中断示意图268图 10-13 直接 FIFO 帧结构中断示意图268图 10-13 直接 FIFO 帧结构中断示意图268	图	5-43	I2C 起始位波形图	216
图 5-46I2C 应答延迟功能波形示意图217图 5-47I2C 数据帧传输间隔功能波形示意图218图 5-48I2C 时钟线下拉等待波形示意图218图 5-49ADC 内部结构图227图 5-51ADC 数据转换时序示意图 (ADC_CON1 寄存器的 SMPS=1, 硬件控制采样)229图 6-1RF 收发器状态控制示意图253图 6-2芯片上电进入发送模式示意图255图 6-3芯片上电进入发送模式示意图255图 7-1增强型帧结构示意图256图 7-2直接 FIFO 帧结构示意图257图 8-14 路 PIPE 通讯示意图258图 10-1FIFO 控制示意图260图 10-2两种帧结构模式下 FIFO 结构261图 10-3直接 FIFO 帧结构发送半空操作示意图262图 10-4直接 FIFO 帧结构接收半满操作示意图262图 10-5IRQ 中断输出示意图263图 10-6ACK 不使能情况中断示意图265图 10-7ACK 使能情况 1 中断示意图265图 10-8PTX 自动重传情况 2 中断示意图266图 10-9PTX 自动重传情况 2 中断示意图266图 10-10PTX 自动重传情况 3 中断示意图266图 10-11PRX 自动重收中断示意图266图 10-12ACK 使能情况下 NOACK 功能中断示意图268图 10-13直接 FIFO 帧结构中断示意图268	图	5-44	I2C 自动寻呼波形图	216
图 5-47 I2C 数据帧传输间隔功能波形示意图 217 图 5-48 I2C 时钟线下拉等待波形示意图 218 图 5-49 ADC 内部结构图 227 图 5-51 ADC 数据转换时序示意图(ADC_CON1 寄存器的 SMPS=1,硬件控制采样) 229 图 6-1 RF 收发器状态控制示意图 253 图 6-2 芯片上电进入发送模式示意图 255 图 6-3 芯片上电进入接收模式示意图 255 图 7-1 增强型帧结构示意图 256 图 7-2 直接 FIFO 帧结构示意图 257 图 8-1 4 路 PIPE 通讯示意图 258 图 10-1 FIFO 控制示意图 260 图 10-2 两种帧结构模式下 FIFO 结构 261 图 10-3 直接 FIFO 帧结构发送半空操作示意图 262 图 10-4 直接 FIFO 帧结构接收半满操作示意图 262 图 10-5 IRQ 中断输出示意图 264 图 10-6 ACK 不使能情况中断示意图 265 图 10-7 ACK 使能情况1 中断示意图 265 图 10-8 PTX 自动重传情况2 中断示意图 266 图 10-10 PTX 自动重传情况3 中断示意图 266 图 10-11 PRX 自动重收中断示意图 266 图 10-12 ACK 使能情况下 NOACK 功能中断示意图 268 图 10-13 直接 FIFO 帧结构中断示意图 268	图	5-45	I2C 停止位波形图	216
图 5-48 I2C 时钟线下拉等待波形示意图 218 图 5-49 ADC 内部结构图 227 图 5-51 ADC 数据转换时序示意图 (ADC_CON1 寄存器的 SMPS=1, 硬件控制采样) 229 图 6-1 RF 收发器状态控制示意图 253 图 6-2 芯片上电进入发送模式示意图 255 图 6-3 芯片上电进入接收模式示意图 255 图 7-2 直接 FIFO 帧结构示意图 256 图 7-2 直接 FIFO 帧结构示意图 257 图 8-1 4路 PIPE 通讯示意图 258 图 10-1 FIFO 控制示意图 260 图 10-2 两种帧结构模式下 FIFO 结构 261 图 10-3 直接 FIFO 帧结构发送半空操作示意图 262 图 10-4 直接 FIFO 帧结构接收半满操作示意图 262 图 10-5 IRQ 中断输出示意图 264 图 10-6 ACK 不使能情况中断示意图 265 图 10-8 PTX 自动重传情况 1 中断示意图 266 图 10-9 PTX 自动重传情况 2 中断示意图 266 图 10-10 PTX 自动重传情况 3 中断示意图 266 图 10-11 PRX 自动重传情况 3 中断示意图 266 图 10-12 ACK 使能情况下 NOACK 功能中断示意图 268 图 10-13 直接 FIFO 帧结构中断示意图 268 图 10-13 直接 FIFO 帧结构中断示意图 268	图	5-46	I2C 应答延迟功能波形示意图	217
图 5-49 ADC 内部结构图227图 5-51 ADC 数据转换时序示意图(ADC_CON1 寄存器的 SMPS=1,硬件控制采样)229图 6-1 RF 收发器状态控制示意图253图 6-2 芯片上电进入发送模式示意图255图 6-3 芯片上电进入接收模式示意图255图 7-1 增强型帧结构示意图256图 7-2 直接 FIFO 帧结构示意图257图 8-1 4路 PIPE 通讯示意图258图 10-1 FIFO 控制示意图260图 10-2 两种帧结构模式下 FIFO 结构261图 10-3 直接 FIFO 帧结构按送半空操作示意图262图 10-4 直接 FIFO 帧结构接收半满操作示意图262图 10-5 IRQ 中断输出示意图263图 10-6 ACK 不使能情况中断示意图265图 10-7 ACK 使能正常通讯中断示意图265图 10-9 PTX 自动重传情况 2 中断示意图266图 10-10 PTX 自动重传情况 3 中断示意图266图 10-11 PRX 自动重收中断示意图266图 10-12 ACK 使能情况下 NOACK 功能中断示意图268图 10-13 直接 FIFO 帧结构中断示意图268图 10-13 直接 FIFO 帧结构中断示意图268	图	5-47	I2C 数据帧传输间隔功能波形示意图	217
図 5-51 ADC 数据转换时序示意图(ADC_CON1 寄存器的 SMPS=1,硬件控制采样)2298 6-1 RF 收发器状态控制示意图2538 6-2 芯片上电进入发送模式示意图255图 6-3 芯片上电进入接收模式示意图255图 7-1 增强型帧结构示意图256图 7-2 直接 FIFO 帧结构示意图257图 8-1 4路 PIPE 通讯示意图258图 10-1 FIFO 控制示意图260图 10-2 两种帧结构模式下 FIFO 结构261图 10-3 直接 FIFO 帧结构接收半满操作示意图262图 10-4 直接 FIFO 帧结构接收半满操作示意图262图 10-5 IRQ 中断输出示意图264图 10-6 ACK 不使能情况中断示意图265图 10-7 ACK 使能正常通讯中断示意图265图 10-9 PTX 自动重传情况 2 中断示意图266图 10-10 PTX 自动重传情况 3 中断示意图(重传超时,重传次数为 2)266图 10-11 PRX 自动重收中断示意图267图 10-12 ACK 使能情况下 NOACK 功能中断示意图268图 10-13 直接 FIFO 帧结构中断示意图268图 10-13 直接 FIFO 帧结构中断示意图268	图	5-48	I2C 时钟线下拉等待波形示意图	218
図 6-1 RF 收发器状态控制示意图253図 6-2 芯片上电进入发送模式示意图255図 6-3 芯片上电进入接收模式示意图255図 7-1 增强型帧结构示意图256図 7-2 直接 FIFO 帧结构示意图257図 8-1 4路 PIPE 通讯示意图258図 10-1 FIFO 控制示意图260図 10-2 两种帧结构模式下 FIFO 结构261図 10-3 直接 FIFO 帧结构接收半满操作示意图262図 10-4 直接 FIFO 帧结构接收半满操作示意图262図 10-5 IRQ 中断输出示意图264図 10-6 ACK 不使能情况中断示意图265図 10-7 ACK 使能正常通讯中断示意图265図 10-8 PTX 自动重传情况 1 中断示意图265図 10-9 PTX 自动重传情况 2 中断示意图266図 10-10 PTX 自动重传情况 3 中断示意图(重传超时,重传次数为 2)266図 10-11 PRX 自动重收中断示意图266図 10-12 ACK 使能情况下 NOACK 功能中断示意图268図 10-13 直接 FIFO 帧结构中断示意图268図 10-13 直接 FIFO 帧结构中断示意图268	图	5-49	ADC 内部结构图	227
図 6-2 芯片上电进入发送模式示意图255図 6-3 芯片上电进入接收模式示意图255図 7-1 增强型帧结构示意图256図 7-2 直接 FIFO 帧结构示意图257図 8-1 4路 PIPE 通讯示意图258図 10-1 FIFO 控制示意图260図 10-2 两种帧结构模式下 FIFO 结构261図 10-3 直接 FIFO 帧结构发送半空操作示意图262図 10-4 直接 FIFO 帧结构接收半满操作示意图262図 10-5 IRQ 中断输出示意图264図 10-6 ACK 不使能情况中断示意图265図 10-7 ACK 使能正常通讯中断示意图265図 10-9 PTX 自动重传情况 1 中断示意图265図 10-10 PTX 自动重传情况 2 中断示意图266図 10-11 PRX 自动重传情况 3 中断示意图266図 10-12 ACK 使能情况下 NOACK 功能中断示意图267図 10-13 直接 FIFO 帧结构中断示意图268	图	5-51	ADC 数据转换时序示意图(ADC_CON1 寄存器的 SMPS=1,硬件控制采样)	229
图 6-3 芯片上电进入接收模式示意图	图	6-1	RF 收发器状态控制示意图	253
图 7-1 增强型帧结构示意图256图 7-2 直接 FIFO 帧结构示意图257图 8-1 4路 PIPE 通讯示意图258图 10-1 FIFO 控制示意图260图 10-2 两种帧结构模式下 FIFO 结构261图 10-3 直接 FIFO 帧结构发送半空操作示意图262图 10-4 直接 FIFO 帧结构接收半满操作示意图262图 10-5 IRQ 中断输出示意图264图 10-6 ACK 不使能情况中断示意图265图 10-7 ACK 使能正常通讯中断示意图265图 10-8 PTX 自动重传情况 1 中断示意图265图 10-9 PTX 自动重传情况 2 中断示意图266图 10-10 PTX 自动重传情况 3 中断示意图(重传超时,重传次数为 2)266图 10-11 PRX 自动重使情况下 NOACK 功能中断示意图267图 10-12 ACK 使能情况下 NOACK 功能中断示意图268图 10-13 直接 FIFO 帧结构中断示意图268	图	6-2	芯片上电进入发送模式示意图	255
图 7-2 直接 FIFO 帧结构示意图 257 图 8-1 4 路 PIPE 通讯示意图 258 图 10-1 FIFO 控制示意图 260 图 10-2 两种帧结构模式下 FIFO 结构 261 图 10-3 直接 FIFO 帧结构发送半空操作示意图 262 图 10-4 直接 FIFO 帧结构接收半满操作示意图 262 图 10-5 IRQ 中断输出示意图 264 图 10-6 ACK 不使能情况中断示意图 265 图 10-7 ACK 使能正常通讯中断示意图 265 图 10-17 ACK 使的正常通讯中断示意图 265 图 10-18 PTX 自动重传情况 1 中断示意图 266 图 10-19 PTX 自动重传情况 2 中断示意图 266 图 10-10 PTX 自动重传情况 3 中断示意图 266 图 10-11 PRX 自动重传情况 3 中断示意图 266 图 10-12 ACK 使能情况下 NOACK 功能中断示意图 268	图	6-3	芯片上电进入接收模式示意图	255
图 8-1 4路 PIPE 通讯示意图258图 10-1 FIFO 控制示意图260图 10-2 两种帧结构模式下 FIFO 结构261图 10-3 直接 FIFO 帧结构发送半空操作示意图262图 10-4 直接 FIFO 帧结构接收半满操作示意图262图 10-5 IRQ 中断输出示意图264图 10-6 ACK 不使能情况中断示意图265图 10-7 ACK 使能正常通讯中断示意图265图 10-8 PTX 自动重传情况 1 中断示意图266图 10-9 PTX 自动重传情况 2 中断示意图266图 10-10 PTX 自动重传情况 3 中断示意图(重传超时,重传次数为 2)266图 10-11 PRX 自动重收中断示意图267图 10-12 ACK 使能情况下 NOACK 功能中断示意图268图 10-13 直接 FIFO 帧结构中断示意图268	图	7-1	增强型帧结构示意图	256
图 10-1 FIFO 控制示意图	图	7-2	直接 FIFO 帧结构示意图	257
图 10-2 两种帧结构模式下 FIFO 结构	图	8-1	4 路 PIPE 通讯示意图	258
图 10-3 直接 FIFO 帧结构发送半空操作示意图262图 10-4 直接 FIFO 帧结构接收半满操作示意图262图 10-5 IRQ 中断输出示意图264图 10-6 ACK 不使能情况中断示意图265图 10-7 ACK 使能正常通讯中断示意图265图 10-8 PTX 自动重传情况 1 中断示意图266图 10-9 PTX 自动重传情况 2 中断示意图266图 10-10 PTX 自动重传情况 3 中断示意图(重传超时,重传次数为 2)266图 10-11 PRX 自动重收中断示意图267图 10-12 ACK 使能情况下 NOACK 功能中断示意图268图 10-13 直接 FIFO 帧结构中断示意图269	图	10-1	FIFO 控制示意图	260
图 10-4 直接 FIFO 帧结构接收半满操作示意图	图	10-2	两种帧结构模式下 FIFO 结构	261
图 10-5 IRQ 中断输出示意图	图	10-3	直接 FIFO 帧结构发送半空操作示意图	262
图 10-6 ACK 不使能情况中断示意图	图	10-4	直接 FIFO 帧结构接收半满操作示意图	262
图 10-7 ACK 使能正常通讯中断示意图	图	10-5	IRQ 中断输出示意图	264
图 10-8 PTX 自动重传情况 1 中断示意图 266 图 10-9 PTX 自动重传情况 2 中断示意图 266 图 10-10 PTX 自动重传情况 3 中断示意图(重传超时,重传次数为 2) 266 图 10-11 PRX 自动重收中断示意图 267 图 10-12 ACK 使能情况下 NOACK 功能中断示意图 268 图 10-13 直接 FIFO 帧结构中断示意图 269	图	10-6	ACK 不使能情况中断示意图	265
图 10-9 PTX 自动重传情况 2 中断示意图	图	10-7	ACK 使能正常通讯中断示意图	265
图 10-10 PTX 自动重传情况 3 中断示意图(重传超时,重传次数为 2)	图	10-8	PTX 自动重传情况 1 中断示意图	266
图 10-11 PRX 自动重收中断示意图	图	10-9	PTX 自动重传情况 2 中断示意图	266
图 10-12 ACK 使能情况下 NOACK 功能中断示意图	图	10-10	PTX 自动重传情况 3 中断示意图(重传超时,重传次数为 2)	266
图 10-12 ACK 使能情况下 NOACK 功能中断示意图	图	10-11	·	
	图	10-12		
	图	10-13	直接 FIFO 帧结构中断示意图	269
	图	10-14		

图	10-15	SPI 写寄存器时序	270
图	10-16	SPI 读寄存器时序	270
图	10-17	SPI 写 FIFO 时序	270
图	10-18	SPI 读 FIFO 时序	270
图	10-19	SPI 时序参数示意图	271
图	12-1	PTX 发送流程图	276
图	12-2	PRX 接收流程图	277
图	12-3	直接 FIFO 帧结构 LEN0_TXMODE='1'发送停止示意图	278
图	12-4	直接 FIFO 帧结构 LEN0_TXMODE='0'发送停止示意图	279
图	12-5	帧长信息配置示意图	280
图	12-6	直接发送模式时序图	281
图	12-7	直接接收模式时序图	281
图	12-8	直接收发模式数据时序示意图	282
图	16-1	PN9 数据白化生成器	286
图	16-2	CRC 硬件实现示意图	286
图	18-1	QFN48 封装尺寸图	320
图	19-1	典型应用原理图	321

表目录

表	1-1	管脚说明表	24
表	1-2	复用管脚对照表	25
表	1-3	内部连线	26
表	1-4	芯片悬空管脚设置说明表	26
表	2-1	低功耗模式时钟状态表	34
表	2-2	异常/中断优先级操作类型说明说明表	54
表	2-3	异常/中断优先级列表	54
表	2-4	IRQ 分配列表	56
表	4-1	PINT 选择对应列表	98
表	4-2	KINT 选择对应列表	99
表	5-1	I2C 总线端口信号的时序参数列表	213
表	5-2	ADC 精度与转换速率的对应关系列表	228
表	5-3	12/24 小时模式对照表	240
表	7-1	标准识别号(ACK 不使能)	256
表	7-2	标准识别号(ACK 使能)	257
表	10-1	推荐 SPI 时序(8MHz)参数	271
表	10-2	GPIO 默认状态	271
表	11-1	20MHz 晶振下各频段范围与配置	272
表	11-2	26MHz 晶振下各频段范围与配置	272
表	11-3	系数 k _{freq} 配置表	273
表	11-4	系数 k _{dev} 配置表	274
表	15-1	CHIPSTA1 各状态说明	285
表	17-1	寄存器列表	290
表	17-2	RFID 寄存器说明	291
表	17-3	TRCTRL 寄存器说明	291
表	17-4	PKTCTRL 寄存器说明	292
表	17-5	PKTCFG0 寄存器说明	293
表	17-6	CRCSEED 寄存器说明	293
表	17-7	PKTCFG1 寄存器说明	293
表	17-8	FIFOTHRES 寄存器说明	294
表	17-9	TXPHR0 寄存器说明	294
表	17-10) TXPHR1 寄存器说明	294
表	17-11	PSDULEN 寄存器说明	295
表	17-12	2 RXPHR0 寄存器说明	295
表	17-13	B RXPHR1 寄存器说明	295
表	17-14	I FIFOCTRL 寄存器说明	296
表	17-15	5 LENOPKLEN 寄存器说明	297
表	17-16	6 FIFOSTA 寄存器说明	298
表	17-17	7 INT 寄存器说明	299
表	17-18	3 INTIE 寄存器说明	299
表	17-19	9 INTIC 寄存器说明	300
表	17-20) CRCVAL 寄存器说明	300
表	17-21	PIPECTRL 寄存器说明	301

V1.5

14/352

表 17-22	P0ADDR0 寄存器说明	301
表 17-23	P0ADDR1 寄存器说明	301
表 17-24	P0ADDR2 寄存器说明	301
表 17-25	P1ADDR0 寄存器说明	302
表 17-26	P1ADDR1 寄存器说明	302
表 17-27	P1ADDR2 寄存器说明	302
表 17-28	P23ADDR 寄存器说明	302
表 17-29	CHIPSTA0 寄存器说明	303
表 17-30	MODECTRL 寄存器说明	304
表 17-31	GPIOCFG0 寄存器说明	305
表 17-32	GPIOCFG1 寄存器说明	307
表 17-33	WDTCFG0 寄存器说明	307
表 17-34	WDTCFG1 寄存器说明	307
表 17-35	WDTWDV 寄存器说明	308
表 17-36	AGCGAIN 寄存器说明	308
表 17-37	RSSI 寄存器说明	308
表 17-38	PREACFG 寄存器说明	308
表 17-39	MODEMCTRL 寄存器说明	309
表 17-40	IFSET 寄存器说明	309
表 17-41	CDTH 寄存器说明	309
表 17-42	CHCFG0 寄存器说明	310
表 17-43	CHCFG1 寄存器说明	310
表 17-44	CHCFG2 寄存器说明	310
表 17-45	CHCFG3 寄存器说明	310
表 17-46	DEVIATION 寄存器说明	310
表 17-47	HOPCFG 寄存器说明	311
表 17-48	FILTERBAND 寄存器说明	311
表 17-49	FREQCFG0 寄存器说明	311
表 17-50	FREQCFG1 寄存器说明	312
表 17-51	FREQCFG2 寄存器说明	312
表 17-52	SYMRATE0 寄存器说明	312
表 17-53	SYMRATE1 寄存器说明	312
表 17-54	RFCFG 寄存器说明	313
表 17-55	CHIPSTA1 寄存器说明	314
表 17-56	XOSC 寄存器说明	314
表 17-57	RCCFG0 寄存器说明	314
表 17-58	RCSTA 寄存器说明	315
表 17-59	RCCFG1 寄存器说明	315
表 17-60	HOPSPACE0 寄存器说明	316
表 17-61	HOPSPACE1 寄存器说明	316
表 17-62	RSSICFG 寄存器说明	316
表 17-63	HOPCH 寄存器说明	317
表 17-64	PACFG 寄存器说明	317
表 17-65	ACKCFG 寄存器说明	317

表	17-66	FIFOPTR 寄存器说明	.318
表	17-67	LEN0RXADD 寄存器说明	.318
表	17-68	INVSFDTIME 寄存器说明	.318
表	17-69	SFTRST0 寄存器说明	.318
表	17-70	SFTRST1 寄存器说明	.319
表	17-71	REGCHECK 寄存器说明	.319
表	17-72	FIFODATA 寄存器说明	.319
表	19-1	不同频率下的射频元件 BOM	.321
表	20-1	芯片功耗	.346
表	20-2	接收机(RX)特性	.347
表	20-3	发射机(TX)特性	.348
表	20-4	频率合成器特性	. 348
表	20-5	低功耗 RC 振荡器特性	.349
表	20-6	石英晶体振荡器特性	.349

第 1 章 芯片简介

1.1 概述

HW3181 是一款高集成度的低功耗 Sub-1GHz 无线 SoC 芯片,可广泛应用于无线抄表、无线门禁、智能家居、工业控制、无线传感器网络、无线遥控、遥测设备等领域。片上集成高性能、低功耗的 RF 收发器和 32 位 MCU。

片上 RF 收发器的外围电路较简单,只需少量的外围被动器件即可构成完整的 Sub-1GHz 无线收发系统。RF 收发器发射功率最大可以到 20dBm,接收灵敏度可达到-114dBm@10Kbps (433MHz)。

片上 MCU 内部集成 32 位 ARM Cortex-M0 CPU 内核, 具备 36KB 的 Flash 程序存储空间。

芯片特性:

◆ 工作条件

- ◇ 工作电压范围: 2.2V~3.6V
- ◇ 工作温度范围: -40℃~85℃

◆ 封装形式

♦ QFN48

MCU 特性:

- ◆ 工作特性
 - ◇ 工作主时钟频率: 32KHz~48MHz
 - ◇ 工作电流: Ivdd = 3.5mA(@内部 HRC 16MHz,典型值)
 - ◇ 待机电流: Ivdd = 5 μA(常温,典型值)

◆ 电源

◇ 低功耗 LVD 用于监测系统电源掉电和上电,可选择产生掉电或上电中断

◆ 复位

- ◇ 内嵌上电复位电路 POR
- ◇ 内嵌掉电复位电路 BOR
- ◇ 支持外部复位

◆ 时钟

- ◇ 外部晶体振荡器可配置,支持低速振荡器 32KHz 和高速振荡器 1~20MHz,可配置 为系统时钟源
- ◇ 内部 16MHz RC 振荡器 (HRC) 可配置为系统时钟源,出厂前已校准(全温度,全电压范围内频率精度为±2%)
- ◇ 内部 32KHz RC 振荡器 (LRC) 作为 WDT 时钟源,可配置为系统时钟源
- ◇ 支持 PLL 倍频,时钟源可选择,最大可倍频至 48MHz,可配置为系统时钟源

◆ 内核

- ◇ ARM Cortex-M0 32 位嵌入式处理器内核
- ◇ 支持 SWD 串行调试接口,支持 2 个监视点(watchpoint)和 4 个断点(breakpoint)

- ◇ 支持两组 SWD 调试接口可选择,通过配置字 DEBUG_S 进行选择
- ◇ 内嵌向量中断控制器 NVIC
- ◇ 支持唤醒中断控制器 WIC
- ◇ NVIC 包含一个不可屏蔽中断 NMI
- ◇ 内置 1 个 SysTick 系统定时器

◆ 硬件看门狗

- ◇ 时钟源可选择
- ◇ 支持低功耗模式下唤醒
- ◇ 超时计数溢出可选择触发中断或复位

◆ 存储资源

- ◇ 36K 字节 FLASH 存储器
 - 支持 ISP 在线串行编程
 - 支持两组 ISP 编程接口可选择,硬件自动识别有效的 ISP 编程接口
 - 支持 IAP 在应用中编程,可选取部分区域作为数据存储使用
 - 支持 FLASH 编程代码加密保护
- ◇ 8K 字节 SRAM 存储器
 - SRAM 存储空间及外设寄存器地址空间支持位带(BIT BAND)扩展

◆ I/O 端口

- ◇ 支持最多 46 个双向 I/O 端口,其中可用端口 37 个,外部可用端口 32 个
 - 外部 PA 端口 18 个(PA0~PA8、PA21、PA24~PA31)
 - 外部 PB 端口 14 个(PB0~PB13)
 - 内连端口 5 个 (PA9~PA13)
 - 内部悬空未用端口 9 个(PA14~PA20、PA22~PA23)

◆ 定时器/计数器

- ◇ T16N0: 16 位定时器/计数器,带预分频器,扩展输入捕捉/输出调制功能
- ◇ T16N1: 16 位定时器/计数器,带预分频器,扩展输入捕捉/输出调制功能
- ◇ T16N2: 16 位定时器/计数器,带预分频器,扩展输入捕捉/输出调制功能
- ◇ T16N3: 16 位定时器/计数器,带预分频器,扩展输入捕捉/输出调制功能
- ◇ T32N0: 32 位定时器/计数器,带预分频器,扩展输入捕捉/输出调制功能
- ◇ RTC : 一路 RTC 实时时钟

◆ UART 通信接口

- ◇ 支持两路 UART 通信接口 UART0, UART1
- ◇ 支持全/半双工异步通信模式
- ◇ 支持传输波特率可配置
- ◇ 支持8级发送/接收缓冲器
- ◇ 支持 7/8/9 位数据格式可配
- ◇ 支持奇偶校验功能可配,支持硬件自动奇偶校验位判断
- ◇ 支持空闲帧检测

V1.5

- ◇ 支持接收帧错误标志、溢出标志、奇偶校验错误标志
- ◇ 支持数据接收和发送中断
- ◇ 支持 PWM 调制输出,且 PWM 占空比线性可调
- ◇ 支持接收端口红外唤醒功能
- ◇ 支持 UART 输入输出通讯端口极性可配置

◆ EUART 通信接口

- ◇ 支持一路 EUART 通信接口 EUART0
- ◇ 兼容 UART 通信接口,可配置为普通 UART 模式
- ◇ 扩展支持异步半双工接收/发送(7816模式)
- ◇ 扩展支持8位数据位和1位奇偶校验位(7816模式)
- ◇ 扩展支持自动重发重收模式(7816模式)
- ◇ 扩展支持可配置内部时钟输出(7816模式)
- ◇ 扩展支持双通道通讯可配置(7816模式)

◆ I2C 通信接口

- ◇ 支持一路通信接口 I2C0
- ◇ 支持主控和从动模式
- ◇ 支持标准 I2C 总线协议,最高传输速率 400K bit/s
- ◇ 支持7位寻址方式
- ◇ 约定数据从最高位开始接收/发送
- ◇ 支持数据接收和发送中断
- ◇ SCL/SDA 端口支持推挽/开漏模式,开漏时必须使能内部弱上拉或使用外部上拉电阻
- ◇ SCL 端口支持时钟线自动下拉等待请求功能

◆ SPI 通信接口

- ◇ 支持二路通信接口 SPI0, SPI1 (外部可用一路 SPI1)
- ◇ 支持主控模式和从动模式
- ◇ 支持 4 种通信数据格式
- ◇ 支持 4 级接收/发送缓冲器
- ◇ 支持数据接收和发送中断

◆ ADC 模拟数字转换器

- ◇ 支持 12 位转换结果,有效精度为 11 位
- ◇ 支持 16 通道模拟输入端(AIN14、AIN 15 不可用,可用 14 通道)
- ◇ 支持参考电压源可选择
- ◇ 支持中断产生
- ◇ 支持转换结果自动比较
- ◇ 支持定时触发 ADC 转换

V1.5 19/352

RF 收发器特性:

- ◆ 频带
 - ♦ 315/433/779/868/915MHz
- ◆ 接收灵敏度

 - -112dBm @10kbps(779/868/915MHz)
- ◆ 调制方式
 - ♦ (G)FSK
- ◆ 最大输出功率
- ◆ 低电流消耗
 - ◇ 8 mA RX(低功耗接收模式)
 - ◇ 18 mA RX(非低功耗接收模式)
- ◆ 各模式下功耗
 - ♦ 100 nA POWER DOWN
 - \diamondsuit 3 μ A DEEP SLEEP
 - \diamondsuit 3.5 μ A SLEEP(RC)
 - ♦ 2 mA IDLE
- ◆ 数据速率: 1.2 Kbps to 100 Kbps
- ◆ 支持自动跳频功能
- ◆ 8个可配通道
- ◆ 选择性性能
 - ◇ 邻道抑制: 41 dB @ 200KHz
 - ◇ 阻断性能: 55 dB @ 1MHz
- ◆ 独立 256 字节发送与接收 FIFO
- ◆ 支持自动应答功能(ACK)
- ◆ 支持自动重传功能(ART)
- ◆ 支持自动频率控制(AFC)
- ◆ 支持自动增益控制(AGC)
- ◆ 支持白化、FEC、CRC 校验
- ◆ 支持曼切斯特编码、8bit/10bit 线性编码
- ◆ 支持数字 RSSI 测量
- ◆ 支持 20/26MHz(±20ppm)晶振
- ◆ 支持 IEEE 802.15.4g 帧结构

1.2 系统框图

HW3181 的整体系统框图如下图所示:

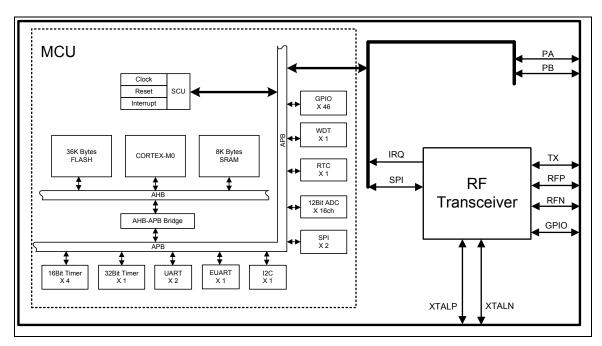


图 1-1 系统内部结构框图

1.3 管脚分配图

1.3.1 QFN48 封装

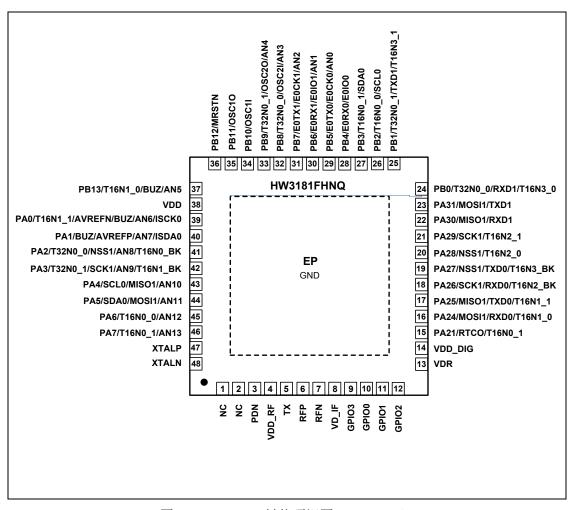


图 1-2 QFN48 封装顶视图(TopView)

注 1:编程/调试接口共用 5 线接口配置,即电源线 VDD、地线 VSS、复位线 MRSTN、时钟线 ISCK 和数据线 ISDA。 芯片出厂时 MRSTN 管脚默认为外部复位功能,必需使用 5 线接口进行编程/调试; 当 MRSTN 管脚复用配置为 GPIO 功能后,调试时复位线 MRSTN 需断开连接;

1.4 管脚说明

1.4.1 管脚说明

管脚编号		管脚功能	管脚说明				
1	NC	未连	内部未连管脚,可以悬空				
2	NC	未连	内部未连管脚,可以悬空				
3	PDN	数字输入	RF 收发器 POWER DOWN 模式使能输入引脚(高电平有效)				
4	VDDRF	电源输入	RF 收发器模拟电源输入				
5	TX	射频输出	RF 收发器发射机射频输出端口				
6	RFP	射频输入					
7	RFN	射频输入	RF 收发器接收机射频输入端口				
8	VR_IF	模拟电源输出	RF 收发器内置的模拟稳压电源输出				
9	GPIO3	数字输入输出					
10	GPIO0	数字输入输出					
11	GPIO1	数字输入输出	RF 收发器通用数字 I/O				
12	GPIO2	数字输入输出					
13	VDR	数字电源输出	RF 收发器数字稳压电源输出				
14	VDD_DIG	电源输入	RF 收发器数字电源输入				
15	PA21/RTCO/T16N0_1	数字输入输出	MCU 通用 IO 口,可复用为 RTCO 等				
16	PA24/MOSI1/RXD0/T16N1_0	数字输入输出	MCU 通用 IO 口,可复用为 SPI、UART、PWM				
17	PA25/MISO1/TXD0/T16N1_1	数字输入输出	MCU 通用 IO 口,可复用为 SPI、UART、PWM				
18	PA26/SCK1/RXD0/T16N2_BK	数字输入输出	MCU 通用 IO 口,可复用为 SPI、UART、PWM				
19	PA27/NSS1/TXD0/T16N3_BK	数字输入输出	MCU 通用 IO 口,可复用为 SPI、UART、PWM				
20	PA28/NSS1/T16N2_0	数字输入输出	MCU 通用 IO 口,可复用为 SPI、PWM				
21	PA29/SCK1/T16N2_1	数字输入输出	MCU 通用 IO 口,可复用为 SPI、PWM				
22	PA30/MISO1/RXD1	数字输入输出	MCU 通用 IO 口,可复用为 SPI、UART				
23	PA31/MOSI1/TXD1	数字输入输出	MCU 通用 IO 口,可复用为 SPI、UART				
24	PB0/T32N0_0/RXD1/T16N3_0	数字输入输出	MCU 通用 IO 口,可复用为 UART、PWM				
25	PB1/T32N0_1/TXD1/T16N3_1	数字输入输出	MCU 通用 IO 口,可复用为 UART、PWM				
26	PB2/T16N0_0/SCL0	数字输入输出	MCU 通用 IO 口,可复用为 I2C、PWM				
27	PB3/T16N0_1/SDA0	数字输入输出	MCU 通用 IO 口,可复用为 I2C、PWM				
28	PB4/E0RX0/E0IO0	数字输入输出	MCU 通用 IO 口,可复用为 EUART				
29	PB5/E0TX0/E0CK0/AN0	数字输入输出	MCU 通用 IO 口,可复用为 EUART、ADC				
30	PB6/E0RX1/E0IO1/AN1	数字输入输出	MCU 通用 IO 口,可复用为 EUART、ADC				
31	PB7/E0TX1/E0CK1/AN2	数字输入输出	MCU 通用 IO 口,可复用为 EUART、ADC				
32	PB8/T32N0_0/OSC2I/AN3	数字输入输出	MCU 通用 IO 口,可复用为 PWM、ADC、外部晶振输入				
33	PB9/T32N0_1/OSC2O/AN4	数字输入输出	MCU 通用 IO 口,可复用为 PWM、ADC、外部晶振输出				
34	PB10/OSC1I	数字输入输出	MCU 通用 IO 口,可复用为外部晶振输入				
35	PB11/OSC1O	数字输入输出	MCU 通用 IO 口,可复用为外部晶振输出				
36	PB12/MRSTN	数字输入输出	MCU 通用 IO 口,可复用为外部复位输入				

管脚编号	管脚名称	管脚功能	管脚说明				
37	PB13/T16N1_0/BUZ/AN5	数字输入输出	MCU 通用 IO 口,可复用为 PWM、Buzzer、ADC				
38	VDD	电源输入	MCU 数字电源输入				
39	DAO/T4CN/4 4/AV/DEEN/DUZ/ANG/ISCKO	粉膏炒)炒山	MCU 通用 IO 口,可复用为 PWM、Buzzer、ADC、编程时				
39	PA0/T16N1_1/AVREFN/BUZ/AN6/ISCK0	数字输入输出	钟口				
40	PA1/BUZ/AVREFP/AN7/ISDA0	数字输入输出	MCU 通用 IO 口,可复用为 ADC、编程数据口				
41	PA2/T32N0_0/NSS1/AN8/T16N0_BK	数字输入输出	MCU 通用 IO 口,可复用为 PWM、SPI、ADC				
42	PA3/T32N0_1/SCK1/AN9/T16N1_BK	数字输入输出	MCU 通用 IO 口,可复用为 PWM、SPI、ADC				
43	PA4/SCL0/MISO1/AN10	数字输入输出	MCU 通用 IO 口,可复用为 I2C、SPI、ADC				
44	PA5/SDA0/MOSI1/AN11	数字输入输出	MCU 通用 IO 口,可复用为 I2C、SPI、ADC				
45	PA6/T16N0_0/AN12	数字输入输出	MCU 通用 IO 口,可复用为 PWM、ADC				
46	PA7/T16N0_1/AN13	数字输入输出	MCU 通用 IO 口,可复用为 PWM、ADC				
47	XTALP	模拟输入	RF 收发器外接晶振的输入端				
48	XTALN	模拟输出	RF 收发器外接晶振的输出端				
EP	GND	地线	芯片底部中央的 PAD 必须接地,包括 RF 和数字地,建议 PCB				
_ EP	GND	地线	设计时在接地 PAD 上均匀放置多个过孔,保证良好的接地。				

表 1-1 管脚说明表

1.4.2 MCU复用管脚对照

PIN NAME (FUN0(D))	FUN1(D)	FUN2(D)	FUN3(D)	FUN4(A)	
PB0	T32N0_0	RXD1	T16N3_0	_	
PB1	T32N0_1	TXD1	T16N3_1	_	
PB2	T16N0_0	NSS0(禁止)	SCL0	_	
PB3	T16N0_1	SCK0(禁止)	SDA0	_	
PB4	E0RX0/E0IO0	MISO0(禁止)	_	_	
PB5	E0TX0/E0CK0	MOSIO (禁止)	_	AIN0	
PB6	E0RX1/E0IO1	ı	_	AIN1	
PB7	E0TX1/E0CK1	ı	_	AIN2	
PB8/OSC2I	_	ı	T32N0_0	AIN3	
PB9/OSC2O	_	ı	T32N0_1	AIN4	
PB10/OSC1I	_		_	_	
PB11/OSC1O	_		_	_	
PB12/MRSTN	_	_	_	_	
PB13	T16N1_0	BUZ	_	AIN5	
PA0/ISCK0	T16N1_1	-	BUZ	AVREFN/AIN6	
PA1/ISDA0	BUZ	_		AVREFP/ AIN7	
PA2	T16N0_BK	T32N0_0	NSS1	AIN8	
PA3	T16N1_BK	T32N0_1	SCK1	AIN9	
PA4	SCL0	_	MISO1	AIN10	

V1.5 24/352

PIN NAME (FUN0(D))	FUN1(D)	FUN2(D)	FUN3(D)	FUN4(A)
PA5	SDA0	_	MOSI1	AIN11
PA6	_	T16N0_0	_	AIN12
PA7	_	T16N0_1	_	AIN13
PA8**	RXD1(禁止)	T16N1_0 (禁止)	_	AIN14(禁止)
PA9*	TXD1(禁止)	T16N1_1 (禁止)	CLKO0(禁止)	AIN15(禁止)
PA10*	T16N2_0 (禁	T16N3_0 (禁止)	NSS0	_
PA11*	T16N2_1(禁	T16N3_1 (禁止)	SCK0(内连)	_
PA12*	_	E0RX0/E0IO0 (禁止)	MISO0(内连)	-
PA13*	_	E0TX0/E0CK0 (禁止)	MOSI0(内连)	_
PA14**	NSSO (禁止)	T16N2_0 (禁止)	_	_
PA15**	SCK0 (禁止)	T16N2_1 (禁止)	_	_
PA16**	MISO0 (禁止)	_	_	_
PA17**	MOSI0 (禁止)	_	_	_
PA18**	T16N3_0 (禁止)	SCL0 (禁止)	_	_
PA19**	T16N3_1 (禁止)	SDA0(禁止)	_	
PA20**	_	CLKO1 (禁止)	T16N0_0 (禁止)	_
PA21	_	RTCO	T16N0_1	_
PA22**	RXD0(禁止)	_	_	_
PA23**	TXD0(禁止)	_	_	_
PA24	MOSI1	RXD0	T16N1_0	_
PA25	MISO1	TXD0	T16N1_1	_
PA26	SCK1	T16N2_BK	RXD0	_
PA27	NSS1	T16N3_BK	TXD0	
PA28	_	NSS1	T16N2_0	_
PA29	_	SCK1	T16N2_1	
PA30	_	MISO1	RXD1	_
PA31	_	MOSI1	TXD1	_

表 1-2 复用管脚对照表

- 注 1: FUNx(D)表示数字端口; FUNx(A)表示模拟端口。
- 注 2: 对通信功能模块 UART, SPI 和 I2C, 每个通信管脚支持多个 IO 端口可复用, 并可独立设置, 例如 PA26 端口复用为 RXD0 时,可以设置 PA27, PA25 和 PA23 端口中的任意一个复用为 TXD0, 作为 UART0 模块的通信管脚。
- 注 3: 加*号的 PA9~PA13 是内部连线, 其中, PA11~PA13 必须设置为 SPI0 功能(FUN3), 而 PA9、PA10 必须设置为 GPIO。

V1.5 25/352

注 4: 加**号的 PA14~PA20、PA22~PA23 是内部悬空管脚,必须设置为 GPIO,并输出低电平。

注 5: 加灰的表示禁止的功能。

1.4.3 内部连线

MCU 和 RF 收发器的数字接口是直接内部连接的,二者连接关系如下表所示:

序号	RF 收发器(I/O)	MCU(I/O)	说明
1	CSN(I)	PA10(O)	RF 收发器 SPI 的片选输入口(低有效),内部与 MCU 的 PA10
_ '	C3N(I)	FATO(O)	相连,PA10 必须设置为 GPIO 输出口。
2	SCK(I)	PA11 (O)	RF 收发器 SPI 的时钟输入口,内部与 MCU 的 PA11 相连,
	JON(I)	FAII (O)	PA11 必须设置为 SPI0 时钟功能,即 SCK0(FUN3)
3	SDI(I)	PA13(O)	RF 收发器 SPI 的输入口,内部与 MCU 的 PA13 相连,PA13
3	3DI(I)	FA13(U)	必须设置为 SPI0 的数据输出功能,即 MOSI0(FUN3)
4	SDO(O)	PA12(I)	RF 收发器 SPI 的输出口,内部与 MCU 的 PA12 相连, PA12
	300(0)	FA12(1)	必须设置为 SPI0 的数据输入功能,即 MISO0(FUN3)
			RF 收发器中断输出口(极性可配,默认低电平有效),内部
5	IRQ(O)	PA9 (I)	与 MCU 的 PA9 相连, PA9 必须设置为 GPIO(即 FUN0)
			输入口,并建议使能中断。

表 1-3 内部连线

1.4.4 MCU内部悬空脚注意事项

需要注意 MCU 内部悬空脚在初始化编程时,应该设置为输出低电平,以保证芯片的正常工作。 悬空脚的状态请按照下表所示来设置:

序号	悬空管脚名	设置状态
1	PA8	必须设置为 GPIO,即 FUN0,并输出低电平
2	PA14	必须设置为 GPIO,即 FUN0,并输出低电平
3	PA15	必须设置为 GPIO,即 FUN0,并输出低电平
4	PA16	必须设置为 GPIO,即 FUN0,并输出低电平
5	PA17	必须设置为 GPIO,即 FUN0,并输出低电平
6	PA18	必须设置为 GPIO,即 FUN0,并输出低电平
7	PA19	必须设置为 GPIO,即 FUN0,并输出低电平
8	PA20	必须设置为 GPIO,即 FUN0,并输出低电平
9	PA22	必须设置为 GPIO,即 FUN0,并输出低电平
10	PA23	必须设置为 GPIO,即 FUNO,并输出低电平

表 1-4 芯片悬空管脚设置说明表

第 2 章 系统控制及操作特性

2.1 系统控制保护

2.1.1 概述

由于系统控制寄存器的访问操作会影响整个芯片的运行状态,为避免误操作导致芯片运行不正常,芯片提供系统设置保护寄存器。修改系统控制单元前,必须先关闭写保护,操作完成后应当重新使能写保护,使芯片安全运行。寄存器列表和基址参见: 3.4.3 系统控制单元(SCU)寄存器列表。

2.1.2 特殊功能寄存器

系统设	系统设置保护寄存器(SCU_PROT)														
偏移地	偏移地址: 00 _H														
复位值	复位值: 00000000_00000000_000000001B														
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							保	留							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
							保留								PROT
							对 S	CU_P	ROT<	31:0>	写 0x5	5AA69	996 时	,位	PROT
	_			bit31-1		W	为 0;								
	写其它值时位 PROT 为 1														
							SCU 写保护位								
	PRO	Т		bit0		R/W	0: -	写保护	关闭						

注 1: 只有以字方式对 SCU_PROT 寄存器写入 0x55AA6996 才能关闭写保护,其他任何对 SCU_PROT 寄存器的写操作都将使能写保护功能。

1: 写保护使能

注 2: SCU_PROT 保护的寄存器为 SCU_NMICON, SCU_PWRC, SCU_FAULTFLAG, SCU_FLASHWAIT, SCU_SOFTCFG, SCU_LVDCON, SCU_CCM, SCU_PLLLKCON, SCU_TIMEREN, SCU_TIMERDIS, SCU_SCLKEN0, SCU_SCLKEN1, SCU_PCLKEN, SCU_WAKEUPTIME, SCU_TBLREMAPEN。

2.2 系统电源

2.2.1 结构框图

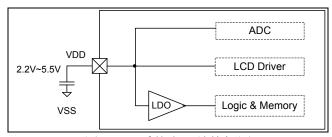


图 2-1 系统电源结构框图

注: I/O 口未完全引出, 所以 HW3181 不能使用 LCD Driver 功能。

2.2.2 芯片供电电源

芯片供电电源为 VDD,与其对应的是芯片的参考地 VSS。

VDD 给 GPIO 端口、ADC 以及 LCDC(HW3181 不能使用)供电,内部 LDO 输出电压给数字逻辑、Flash、SRAM 等供电。

2.3 系统复位

2.3.1 概述

- ◇ 支持 POR 上电复位
- ◇ 支持 BOR 低电压监测复位
- ◇ 支持 MRSTN 外部端口复位
- ◇ 支持 WDT 看门狗计数溢出复位
- ◇ 支持 Cortex-M0 调试接口软件复位

2.3.2 结构框图

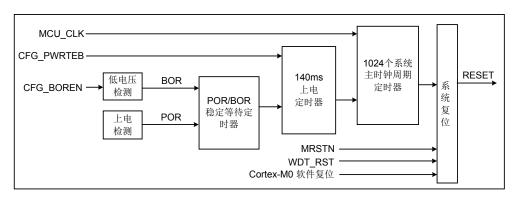


图 2-2 系统复位电路结构框图

注 1: 对 140ms 上电延时定时器,在 MRSTN 管脚复用为 GPIO 功能时,或当芯片发生 BOR 掉电复位后,该延时 固定为使能,与配置位 CFG PWRTEB 无关。

V1.5 28/352

注 2: 芯片上电稳定后,在工作过程中,如果发生外部复位,WDT 计数溢出复位,或软件复位,则在复位条件撤除后,芯片会立即退出复位状态,恢复正常运行状态,与上图中的各定时器无关。

2.3.3 复位时序图

以下分别对芯片上电复位 POR, 掉电复位 BOR, 外部复位时序进行说明, 时序图中的 RESET 信号, 为芯片内部产生的复位信号, 高电平有效。

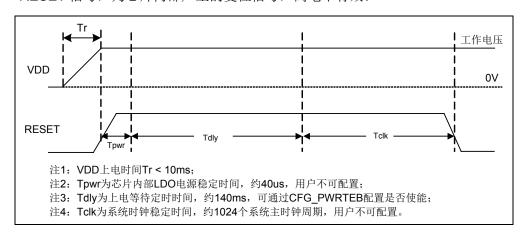


图 2-3 上电复位时序示意图

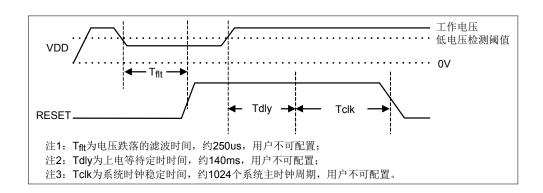


图 2-4 掉电复位时序示意图

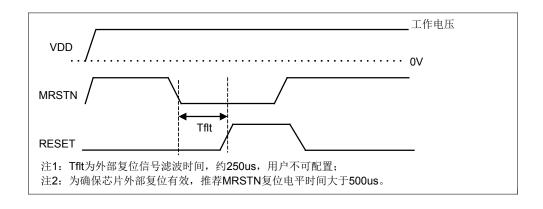


图 2-5 外部复位时序示意图

V1.5

2.3.4 外部复位MRSTN参考

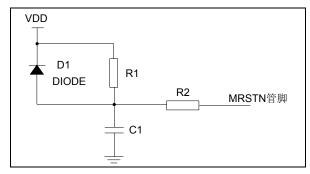


图 2-6 MRSTN 复位参考电路图 1

注 1: 采用 RC 复位,其中 47KΩ≤R1≤100KΩ,电容 C1= (0.1μF),R2 为限流电阻,0.1KΩ≤R2≤1KΩ。

注 2: 当 MRSTN 用作外部复位管脚时,芯片内部固定集成了约 45K 欧姆的上拉电阻,可以省去上图中的电阻 R1。

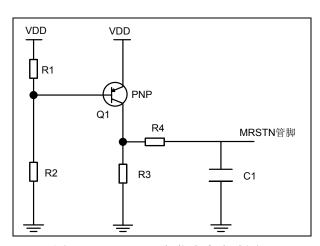


图 2-7 MRSTN 复位参考电路图 2

注: 采用 PNP 三极管复位,通过 R1(2K Ω)和 R2(10K Ω)分压作为基极输入,发射极接 VDD,集电极一路通过 R3(20K Ω)接地,另一路通过 R4(1K Ω)和 C1(0.1 μ F)接地,C1 另一端作为 MRSTN 输入。

2.3.5 特殊功能寄存器

复位寄存	复位寄存器(SCU_PWRC)														
偏移地址	偏移地址: 08H														
复位值:	复位值: 00000000_00000000_00000000_xxxxxxxxxx B														
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
								保	留						
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		/1	え留 これ				CFG_	POR_L	SOFT_	MR	WDTR	BOR	PORRST	POR	POR
		77	下田				RST	OST	RSTF	STF	STF	F	F	RCF	F
,															

_	bit31-9		_
CFG_RST	bit8	R/W	配置字读取标志位 (内部测试用,用户无需关心

V1.5 30/352

T .		
		此位)
		0: 无读取配置字发生
		1: 读取配置字发生
		POR 丢失标志位(内部测试用,使用注意事项
hit7	DΛΛ	参见注 2)
Diti	IX/VV	0: 无 POR 丢失
		1: 有 POR 丢失
		软件复位标志位
bit6	R/W	0: 无软件复位
		1: 有软件复位
		MRSTN 复位标志位
bit5	R/W	0: 无 MRSTN 复位
		1:有 MRSTN 复位
		WDT 复位标志位
bit4	R/W	0: 无 WDT 复位
		1: 有 WDT 复位
		BOR 掉电复位标志位
bit3	R/W	0: 无 BOR 复位
		1: 有 BOR 复位
		PORRST 上电复位标志位(内部测试用,使用
F:10	D 44/	注意事项参见注 2)
DITZ	R/VV	0: 无 PORRST 复位
		1: 有 PORRST 复位
		PORRC 复位标志位
bit1	R/W	0: 无 PORRC 复位
		1: 有 PORRC 复位
		POR 复位标志位(内部测试用,用户无需关心
F.10	R/W	此位)
bitU		0: 无 POR 复位
		1: 有 POR 复位
	bit4 bit3 bit2	bit6 R/W bit5 R/W bit4 R/W bit3 R/W bit2 R/W

- 注 1: 电源供电异常时, PORRCF 标志可能会失效。
- 注 2: 上电后用户必须先对 PORRSTF 作清零操作,否则即使发生 bit3~bit6 对应的复位事件,也无法置起 bit3~bit6 标志位。
- 注 3: 对 SCU_PWRC 寄存器进行写操作前,需要设置 SCU_PROT 寄存器,关闭写保护。

2.4 低电压监测(LVD)

2.4.1 概述

芯片內置 LVD 低电压监测模块,可监测 VDD 电压。触发条件可选择掉电触发或上电触发,触发后产生 LVD 中断标志,当 LVD 中断使能开启时产生 LVD 中断请求。在浅睡眠和深睡眠模式下此中断可唤醒芯片。

2.4.2 特殊功能寄存器

低电压	低电压监测控制寄存器(SCU_LVDCON)														
偏移地址	偏移地址: 28 _H														
复位值:	000000	000_000	00000_0	0000000	0_0000	000в									
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	保留														
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
LVDO	保	昭	IFS<2:0>		IE	IF	VS<3:0>			保留		FLTEN	EN		

_	bit31-16	_	_
			LVD 输出状态位
LVDO	bit15	R	0:被监测电压高于电压阈值
			1:被监测电压低于电压阈值
_	bit14-13	_	_
	bit12-10	R/W	LVD 中断标志产生模式选择位
			000: LVDO 上升沿产生中断
IFS<2:0>			001: LVDO 下降沿产生中断
11-3-2.0>	DIL12-10		010: LVDO 高电平产生中断
			011: LVDO 低电平产生中断
			1xx: LVDO 变化(上升或下降沿)产生中断
		R/W	LVD 中断使能位
ΙE	bit9		0: 禁止
			1: 使能
	bit8	R/W	LVD 中断标志位
			0:未发生 LVD 触发事件
l -			1: 发生 LVD 触发事件
IF			边沿模式产生中断标志时,可以写1清除标志;
			电平模式产生中断标志时,该标志只读,触发电平
			消失后,中断标志自动清零。
		R/W	LVD 触发电压
	> bit7-4		0000: 2.0V
VO 40.05			0001: 2.1V
VS<3:0>			0010: 2.2V
			0011: 2.4V
			0100: 2.6V

V1.5 32/352

			0101: 2.8V
			0110: 3.0V
			0111: 3.6V
			1000: 4.0V
			1001: 4.6V
			1010: 2.3V
			1011,,1100,1101,1110,1111:保留
_	bit3-2	_	_
			LVD 滤波使能位
FLTEN	bit1	R/W	0: 禁止
			1: 使能
			LVD 使能位
EN	bit0	R/W	0: 禁止
			1: 使能

注 1: 对 SCU_LVDCON 寄存器进行写操作前,需要设置 SCU_PROT 寄存器,关闭写保护。

注 2: 对 LVD 滤波使能位 FLTEN,需根据实际芯片的工作电源和环境,及应用系统的具体要求进行设置,当 LVD 滤波使能时,会滤除短暂的电源电压抖动,但也会降低 LVD 电路对电源波动的反应敏感度。

2.5 系统低功耗操作模式

2.5.1 概述

配置外设时钟控制寄存器 SCU_PCLKEN,可分别关闭芯片各个外设功能模块电路的时钟, 使该部分电路功耗降到最低。

通过 WFI 指令,可使芯片进入休眠状态,配置 SCB_SCR 寄存器的 SLEEPDEEP 位,可选择休眠状态为浅睡眠模式或深度睡眠模式。

芯片进入休眠状态后,所有 I/O 端口将保持进入休眠前的状态。为了降低功耗,所有 I/O 端口都应保持为高电平或低电平,同时避免输入端口悬空而产生漏电流,可通过弱上拉或弱下拉将悬空的输入端口固定为高电平或低电平。

芯片进入休眠状态后,时钟工作状态参考下表:

时钟源	浅睡眠模式	深度睡眠模式
XTAL	工作(若 XTAL_EN=1)	工作(若 XTAL_EN=1 且 MOSC_EN=1)
HRC	工作(若 HRC_EN=1)	工作(若 HRC_EN=1 且 MOSC_EN=1)
LRC	工作	工作

表 2-1 低功耗模式时钟状态表

2.5.2 浅睡眠模式

在浅睡眠模式下,芯片内核时钟停止,指令停止运行。可通过复位或中断唤醒浅睡眠模式。 芯片进入浅睡眠模式的步骤如下:

配置休眠状态选择位 SLEEPDEEP=0;

运行等待中断(WFI)指令,进入浅睡眠模式。

在浅睡眠模式下外设功能模块继续运行,并可能产生中断使内核处理器恢复运行。浅睡眠模式下不访问存储器系统,相关控制器和内部总线。

在浅睡眠模式下,内核处理器的状态和寄存器,外设寄存器和内部 SRAM 的值都会保持,端口的逻辑电平也会保持睡眠前的状态。

2.5.3 深度睡眠模式

在深度睡眠模式下,芯片内核时钟停止,指令停止运行。可通过复位或中断唤醒深度睡眠模式。

芯片进入深度睡眠模式的步骤如下:

- 1) 配置休眠状态选择位 SLEEPDEEP=1;
- 2) 运行等待中断 (WFI) 指令,进入深度睡眠模式。

在深度睡眠模式下,外设时钟 PCLK 停止,使用 PCLK 或其分频时钟作为时钟源的外设功能模块都停止工作,其它使用内部低速时钟 LRC 或外部时钟 XTAL 作为时钟源的外设功能模块可正常工作。深度睡眠模式下不访问存储器系统,相关控制器和内部总线。

在深度睡眠模式下,内核处理器的状态和寄存器,外设寄存器和内部 SRAM 的值都会保持,端口的逻辑电平也会保持深度睡眠前的状态。

在进入深度睡眠模式前,通过系统唤醒时间控制寄存器(SCU WAKEUPTIME)的深度睡

眠模式时钟控制位 (MOSC_EN) 来选择主晶振 XTAL、PLL、HRC 和时钟滤波器 CLKFLT 等时钟模块是否关闭。选择时钟模块关闭时(即 MOSC_EN=0),可降低深度睡眠模式下系统的功耗,但同时也增大了唤醒时所需要的时间。

注:进入睡眠模式前需先清除所有中断挂起标志位,否则任意已经置起的中断挂起标志位,都会导致芯片无法进入 睡眠模式,在清除中断挂起标志位的指令和进睡眠模式的指令之间,需延时至少一个 NOP 指令周期,确保清 挂起标志位操作执行完毕。

2.5.4 睡眠模式的唤醒

芯片可通过以下事件从睡眠状态唤醒,并执行下一条指令或进入中断处理程序。如果是中断唤醒且该中断已使能,则唤醒后立即进入中断处理程序。

- ◇ 浅睡眠模式唤醒:
 - 所有中断均可以唤醒浅睡眠模式
 - 芯片复位唤醒浅睡眠模式
- ◇ 深度睡眠模式唤醒:
 - 外部端口中断 PINTx 可以唤醒深度睡眠模式
 - 外部端口中断 KINT 可以唤醒深度睡眠模式
 - RTC 中断可以唤醒深度睡眠模式
 - LVD 中断可以唤醒深度睡眠模式
 - WDT 中断可以唤醒深度睡眠模式(工作于 LRC 时钟源)
 - ADC 中断可以唤醒深度睡眠模式(工作于 LRC 时钟源)
 - 芯片复位唤醒深度睡眠模式

2.5.5 睡眠模式的唤醒时间

芯片深度睡眠模式的唤醒时间,包括系统时钟稳定时间和内部 LDO 电压稳定时间,具体的唤醒时间,与系统时钟源和深度睡眠模式下是否使能系统时钟有关。

内部 HRC 时钟的起振稳定时间约为 40μs,外部时钟 XTAL 16MHz 振荡器的起振稳定时间约为 5ms,外部 XTAL 32KHz 的起振稳定时间约为 1.2 秒。

内部 HRC 时钟的稳定时间可软件设置: Tpclk*WAKEUPTIME (其中 Tpclk 为系统时钟周期, WAKEUPTIME 为唤醒时间控制位 WAKEUPTIME<11:0>),推荐 HRC 时钟的稳定时间需设置为大于 40μs,否则芯片唤醒后有可能工作异常。

内部 LDO 电压稳定时间约为 15 μ s, 为提高深度睡眠模式唤醒后, 芯片运行的可靠性, 在进入深度睡眠模式前, 需将系统时钟切换到内部 HRC 时钟, 并将系统时钟后分频比设置为 1:16 以上, 在深度睡眠模式唤醒后, 再通过软件重新切换回原系统时钟和后分频比设置。

例如使用内部 HRC 时钟作为系统时钟时:

时钟控制位 MOSC_EN=0 时,深度睡眠模式的唤醒时间最短约为 15μs+40μs=55μs; 时钟控制位 MOSC_EN=1 时,深度睡眠模式的唤醒时间最短约为 15μs(睡眠前系统时钟后分频为 1:64)。

浅睡眠模式无唤醒时间,与 MOSC_EN 和 WAKEUPTIME 的设置无关,有唤醒事件时,芯片立即被唤醒并开始执行程序。

2. 5. 6 FLASH存储器等待功能

FLASH 存储器的访问频率对芯片功耗影响较大,降低其访问频率,可降低芯片功耗。可以通过降低系统时钟频率来降低 FLASH 存储器的访问频率,但这同时也会降低芯片外设模块的工作速率。

芯片支持增加 FLASH 存储器等待时间的设置,在不降低系统时钟频率的前提下,降低 FLASH 存储器取指令或数据的频率,从而降低芯片整体功耗。同时 FLASH 存储器支持最高 24MHz 的访问频率,如果系统时钟的频率超过 24MHz,则也需要设置 FLASH 存储器等待时间,否则会导致 FLASH 访问错误。

配置 SCU_FLASHWAIT 寄存器的 ACCT<3:0>,可设定 FLASH 访问的等待时间。FLASH 访问的等待时间,与芯片支持的系统时钟最高频率的对应关系描述如下:

ACCT<3:0>=0 时,芯片系统时钟频率最高可为 24MHz;

ACCT<3:0>=1 时,芯片系统时钟频率最高可为 40MHz;

ACCT<3:0>=2~F 时,芯片系统时钟频率最高可为 48MHz。

如上所述,当芯片系统时钟选为 PLL 倍频时钟 32MHz 时,ACCT<3:0>不能为 0,即至少需要 2 个系统时钟周期才能成功访问 FLASH 存储器;当芯片系统时钟选为 PLL 倍频时钟 48MHz 时,ACCT<3:0>不能为 0 或 1,即至少需要 3 个系统时钟周期才能成功访问 FLASH 存储器。所以当系统时钟为 32MHz 或 48MHz 时,需要先设置 ACCT<3:0>,选择合适的 FALSH 读取时间,再将系统时钟切换到 32MHz 或 48MHz,否则会导致芯片指令运行错误。

2.5.7 特殊功能寄存器

FLASH 访问等待时间寄存器(SCU_FLASHWAIT) 偏移地址: 20_H 复位值: 00000000_00000000_00000000_0000010B 31 30 29 26 23 22 20 19 17 16 28 27 25 24 21 18 保留 15 14 12 10 6 5 0 13 11 7 保留 ACCT<3:0>

_	bit31-4	_	_
ACCT<3:0>	bit3-0	R/W	FLASH 读取访问等待时间设置位 0: 1Tclk 完成 FLASH 读取 1: 2Tclk 2: 3Tclk F: 16Tclk

注 1: 对 SCU_FLASHWAIT 寄存器进行写操作前,需要设置 SCU_PROT 寄存器,关闭写保护。

注 2: TCLK 时钟周期与芯片系统时钟周期相同。

2.6 系统时钟

2.6.1 概述

芯片系统有四个可选时钟源。

- ◇ 外部时钟源支持两种模式,即高速模式 HS 和 XT (又称为 HOSC, 1~20MHz) 和低速模式 LP (又称为 LOSC, 32KHz)。支持 2 组外部晶振管脚可选择。
- ◇ 内部高频 RC 时钟源 HRC,支持 16MHz 时钟频率。
- ◇ 内部低频 RC 时钟源 LRC, 支持约 32KHz 时钟频率。
- ◇ 内部集成锁相环电路 PLL,其时钟源输入频率支持 32KHz 或 4MHz(输入时钟源为 HRC 时,芯片自动 4 分频获取 4MHz),PLL 输出时钟频率支持 32MHz 或 48MHz。
- ◇ 系统时钟支持 1~128 分频。
- ◇ 支持 2 组 IO 端口可输出系统时钟频率。
- ◇ 外部时钟停振检测,支持停振后自动切换至 LRC 时钟并产生中断。
- ◇ PLL 失锁检测,支持 PLL 失锁后自动切换至使用 PLL 前的时钟源并产生中断。
- ◇ 支持系统时钟滤波,提高系统工作稳定性。

芯片系统时钟源的选择方式, 见如下描述:

- 1) 系统时钟为外部时钟源 XTAL: 在编程界面中设置配置字,选择晶振管脚,选择高速 HS/XT 模式或低速 LP 模式;在程序软件中设置 SCU_SCLKEN0 寄存器的 CLK_SEL=2,设置 SCU_SCLKEN1 寄存器的 XTAL_EN=1,选择并使能外部振荡器时钟;设置 SCU SCLKEN1 寄存器的 PLL_EN=0。
- 2) 系统时钟为内部时钟源 HRC 16MHz: 在编程界面中设置配置字, 选择内部时钟 16MHz; 在程序软件中设置 SCU_SCLKEN0 寄存器的 CLK_SEL=0; 设置 SCU_SCLKEN1 寄存器的 PLL EN=0。
- 3) 系统时钟为内部时钟源 LRC 32KHz: 设置 SCU_SCLKEN0 寄存器的 CLK_SEL=1; 设置 SCU SCLKEN1 寄存器的 PLL EN=0。
- 4) 系统时钟为内部时钟源 PLL 倍频时钟:设置 SCU_SCLKEN0 寄存器的 CLK_SEL=0;设置 SCU_SCLKEN1 寄存器的 PLL_REF_SEL,选择 PLL 输入时钟源,设置 PLL_48M_SEL,选择 PLL 输出时钟频率,设置 PLL_EN=1。

2.6.2 结构框图

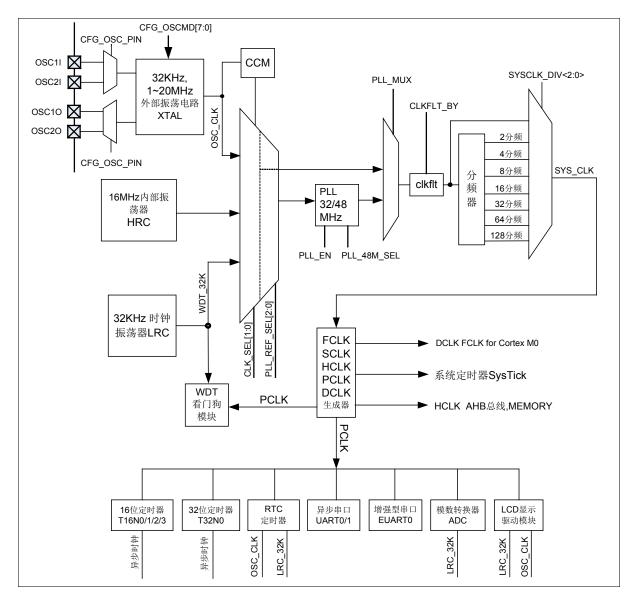


图 2-8 系统时钟电路结构框图

2.6.3 功能说明

2. 6. 3. 1 外部时钟XTAL

外部振荡器可通过 PB8、PB9 或 PB10、PB11 其中一组端口串接晶振工作,可在编程界面中设置芯片配置字进行选择。只要外部振荡器模块使能后(XTAL_EN=1),对应的 IO端口即被用作模拟端口,禁止其数字输入输出功能。

外部时钟源支持两种模式,即高速模式 HS/XT(又称为 HOSC,频率范围为 1~20MHz)和低速模式 LP(又称为 LOSC,频率约为 32KHz)。可在编程界面中设置芯片配置字进行选择,工作在低速模式时,建议使用 32.768KHz 晶振,工作在高速模式 HS 时,建议使用 5~20MHz 晶振,工作在高速模式 XT 时,建议使用 1~4MHz 晶振。

当使用外部振荡器时, 需外接匹配电容。XTAL 振荡器电路示意图如下:

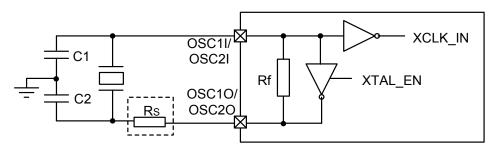


图 2-9 XTAL 振荡器电路结构示意图

注 1: 电阻 RS 为可选配置。

注 2: C1 和 C2 为晶振匹配电容,根据所使用的晶振,电容参考取值范围为 10~20pF,建议 1~20MHz 晶振匹配 15pf 电容, 32.768KHz 晶振匹配 12pf 电容,具体电容值需根据外接晶振的参数需求确定。

芯片上电后系统时钟默认为内部高速时钟 HRC,需软件配置方可使用外部时钟 XTAL。详情可参考外部时钟操作例程。当 MOSC_EN=0,芯片进入深度睡眠模式时,XTAL 时钟振荡器会自动关闭,被唤醒后,XTAL 时钟振荡器会自动打开;当 MOSC_EN=1,芯片进入深度睡眠模式时,XTAL 时钟振荡器不会关闭。

当系统时钟选择为外部时钟 XTAL,在芯片正常工作时,不建议关闭 XTAL 时钟振荡器 (XTAL_EN=0),否则系统时钟会自动切换至内部低速 LRC 时钟。

可通过寄存器位 XTAL_LP,选择外部时钟振荡器的功耗模式,该选择位仅在外部时钟处于低速 LP模式时有效,在软件检测到外部振荡器稳定后(XTAL_RDY=1),可以将振荡器设置为低功耗模式,降低芯片振荡器电路功耗。当外部时钟为高速 HS模式时,振荡器电路会一直保持高功耗模式,无法设置为低功耗模式。

2.6.3.2 内部高速时钟HRC

内部高速时钟 HRC 16MHz 频率。全温度范围内 HRC 频率精度为±2%。芯片上电后系统时钟默认为内部高速时钟 HRC,可通过寄存器位 HRC_EN 关闭。

当系统时钟选择为内部高速时钟 HRC 时,不建议关闭 HRC 时钟(HRC_EN=0),否则系统时钟会自动切换至内部低速 LRC 时钟。

在 HRC_EN=1 的情况下,当 MOSC_EN=0,芯片进入深度睡眠模式时,HRC 时钟会自动关断,被唤醒后,HRC 时钟会自动使能;当 MOSC_EN=1,芯片进入深度睡眠模式时,HRC 时钟不会关闭。

2.6.3.3 内部低速时钟LRC

芯片支持内部低速时钟 LRC (频率约为 32KHz),且无法关闭,始终保持工作。全温度范围内,LRC 时钟频率精度为±40%。内部低速时钟可供芯片主系统、WDT、LCDC、LEDC、RTC 等模块使用。对于时钟频率精度要求高的模块不建议使用 LRC 作为时钟源。

注: HW3181 不能使用 LCDC、LEDC 模块。

2. 6. 3. 4 锁相环PLL

PLL 时钟输入可选择 XTAL(32.768KHz、4MHz、8MHz、16MHz),HRC(16MHz),LRC(32KHz)。

V1.5

PLL 模块工作时,通过寄存器位 PLL_REF_SEL<2:0>选择其输入时钟源,同时需对所选用的 HRC,LRC 或 XTAL 时钟振荡器进行对应的正确设置;通过寄存器位 PLL_48M_SEL选择 PLL 模块的倍频系数,得到对应的时钟输出频率,具体见下面的详细描述:

当 PLL_REF_SEL=0/1 时:禁止设置。

当 PLL_REF_SEL=2 时: HRC 必须配置为 16MHz (通过芯片配置字进行配置), PLL 输入时钟源为 HRC 16MHz 的 4 分频。当 PLL_48M_SEL=0 时, PLL 倍频系数为 8 倍, PLL 输出时钟为 32MHz。当 PLL_48M_SEL=1 时, PLL 倍频系数为 12 倍, PLL 输出时钟为 48MHz。

当 PLL_REF_SEL=3 时: PLL 输入时钟源为 LRC 32KHz。当 PLL_48M_SEL=0 时, PLL 倍频系数为 1024 倍, PLL 输出时钟为 32.768MHz。当 PLL_48M_SEL=1 时, PLL 倍频系数为 1536 倍, PLL 输出时钟为 49.152MHz。

当 PLL_REF_SEL=4 时: XTAL 必须配置为 XT 模式, 外接 4MHz 振荡器, PLL 输入时钟源为 XTAL 4MHz 时钟。当 PLL_48M_SEL=0 时, PLL 倍频系数为 8 倍, PLL 输出时钟为 32MHz。当 PLL 48M SEL=1 时, PLL 倍频系数为 12 倍, PLL 输出时钟为 48MHz。

当 PLL_REF_SEL=5 时: XTAL 必须配置为 HS 模式,外接 8MHz 振荡器, PLL 输入时钟源为 XTAL 8MHz 时钟的 2 分频。当 PLL_48M_SEL=0 时,PLL 倍频系数为 8 倍,PLL输出时钟为 32MHz。当 PLL_48M_SEL=1 时,PLL 倍频系数为 12 倍,PLL 输出时钟为 48MHz。

当 PLL_REF_SEL=6 时: XTAL 必须配置为 HS 模式, 外接 16MHz 振荡器, PLL 输入时钟源为 XTAL 16MHz 时钟的 4 分频。当 PLL_48M_SEL=0 时, PLL 倍频系数为 8 倍, PLL 输出时钟为 32MHz。当 PLL_48M_SEL=1 时, PLL 倍频系数为 12 倍, PLL 输出时钟为 48MHz。

当 PLL_REF_SEL=7 时: XTAL 必须配置为 LP 模式,外接 32.768KHz 振荡器,PLL 输入时钟源为 XTAL 32.768KHz 时钟。当 PLL_48M_SEL=0 时,PLL 倍频系数为 1024 倍,PLL 输出时钟为 33.554MHz。当 PLL_48M_SEL=1 时,PLL 倍频系数为 1536 倍,PLL 输出时钟为 50.331MHz。

对 PLL 模块,必须等其所选择的输入时钟源稳定后,才可以使能 PLL 工作(PLL_EN=1),详情可参考 PLL 操作例程。

在 PLL_EN=1 的情况下,当 MOSC_EN=0,芯片进入深度睡眠模式时,PLL 会自动关闭,被唤醒后,PLL 会自动打开;当 MOSC_EN=1,芯片进入深度睡眠模式时,PLL 不会关闭。

PLL 模块支持锁频或失锁中断,可通过寄存器位 LK_IFS<2:0>进行选择,当 LK_IFS=0 或 2 时,PLL 锁频成功时产生中断,当 LK_IFS=1 或 3 时,PLL 锁频失败时产生中断,当 LK_IFS=4,5,6 或 7 时,PLL 锁频成功或失败时都可以产生中断。

PLL 模块工作时,建议不旁路 PLL 锁频信号(PLL_BYLOCK=0),当 PLL 时钟失锁后,系统会自动切换至非 PLL 的原始时钟源(由 CLK_SEL 决定)。如果旁路 PLL 锁频信号(PLL_BYLOCK=1),当 PLL 时钟失锁后,系统仍使用 PLL 时钟,可能会导致芯片工作异常。

芯片支持 2 路 IO 端口输出时钟信号。其中 CLKOO 端口支持高频时钟直接输出,CLKO1 端口支持高频时钟 512 分频后输出。使用时需配置相应的端口复用选择寄存器 GPIO_PAFUNC/GPIO_PBFUNC,使能管脚的时钟输出功能。当使用高频时钟直接输出时,需使能管脚大电流驱动模式,以免输出时钟波形严重失真。

注: 当 PLL 输入时钟源选择为内部 LRC 时钟或外部 32KHz 时钟时,如果 PLL_48M_SEL=1,则 PLL 输出时钟频率高于 48MHz,略超过芯片主系统时钟频率范围上限,所以建议此时设置 PLL_48M_SEL=0,或系统时钟后分频设置为 1:2 以上。

2. 6. 3. 5 外部时钟停振检测CCM

外部时钟停振检测模块使能必须同时满足以下条件:

- 1. SCU CCM 寄存器的外部时钟停振检测软件使能位 EN=1。缺省为使能。
- 2. 时钟源必须选择为外部时钟,即 SCU_SCLKEN0 寄存器的 CLK_SEL=2。 例如:当 PLL 时钟源输入使用的是外部时钟,但是以上 2 个条件有任何一个不满足时,外部时钟停振检测模块不工作。

外部时钟停振检测开始工作后,当检测到外部时钟停振时,系统时钟会自动切换至 LRC 时钟,同时会置起中断标志位。但需注意,当 MOSC_EN=0 时,因芯片进入深度睡眠模式关闭外部时钟源导致外部时钟停振的情况不会产生时钟停振中断标志位。当芯片进入停振中断后,需立即操作 CLK_SEL 把系统时钟切换至 LRC 或 HRC,同时关闭外部时钟振荡器(XTAL_EN=0);如果使用 PLL,则还需要关闭 PLL 模块(PLL_MUX=0,PLL_EN=0)。当外部时钟停振问题解决后,必须再次通过软件配置使能外部时钟。详情参见以下外部时钟停振检测中断服务例程。

外部时钟停振检测中断服务例程

INT CCM PROC

PUSH {LR}

LDR R0, =SCU_SCLKEN0

LDR R1, [R0]

LDR R2, = 0XFFFFFFD ; 系统时钟切换至 LRC

ADDS R1, R1, R2

LDR R0, =SCU_SCLKEN1

LDR R1, [R0]

LDR R2, = 0XFFFFFFFE; 关闭外部时钟振荡器

ADDS R1, R1, R2

. . .

2.6.3.6 时钟滤波CLKFLT

芯片支持系统时钟分频前滤波。

系统时钟滤波使能操作时,必须先设置 SCU_WAKEUPTIME 寄存器的 CLKFLT_EN 位为 1 以使能系统时钟滤波器,然后设置 SCU_SCLKEN0 寄存器的 CLKFLT_BY≠8'h55 以选用经滤波的系统时钟。

V1.5 41/352

当需要关闭时钟滤波时,必须先旁路 CLKFLT,即设置 CLKFLT_BY=8'h55,然后再设置 CLKFLT EN=0 来关闭时钟滤波器。详情可见时钟滤波例程。

在 CLKFLT_EN=1 的情况下,当 MOSC_EN=0,芯片进入深度睡眠模式时,CLKFLT 会自动关断,而当深度睡眠唤醒后,CLKFLT 会自动打开;当 MOSC_EN=1,芯片进入深度睡眠模式时,CLKFLT 不会关断。

为保证系统工作可靠性,除深度睡眠模式外,不建议关闭 CLKFLT。

2.6.3.7 睡眠模式系统状态

在睡眠模式下,芯片内核处理器的状态和寄存器,外设寄存器和内部 SRAM 的值都会保持,端口的逻辑电平也会保持睡眠前的状态。

2.6.3.8 浅睡眠模式

在浅睡眠模式下,芯片内核时钟停止工作,外设时钟 PCLK 正常运行,芯片时钟源正常工作。

2.6.3.9 深度睡眠模式

在深度睡眠模式下,芯片内核时钟停止工作,外设时钟 PCLK 停止运行。

- 1) MOSC_EN=0 时:除 LRC 时钟源正常运行外,XTAL、HRC、PLL 和 CLKFLT 模块全部关断。外设模块只有选择使用 LRC 作为时钟源的能正常工作,其它全部停止工作(异步唤醒功能正常工作)。当芯片唤醒后,XTAL、HRC、PLL、CLKFLT 自动恢复到睡眠前的状态。
- 2) MOSC_EN=1 时:时钟源正常运行,PLL 模块、CLKFLT 正常工作。外设模块只有选择使用 LRC、XTAL 作为时钟源的能正常工作,其它使用 PCLK 或其分频时钟作为时钟源的全部停止工作(异步唤醒功能正常工作)。

2.6.4 特殊功能寄存器

系统时	系统时钟控制寄存器 0(SCU_SCLKEN0)														
偏移地	址: 4	0н													
复位值	ī: 000	00000	_0000	0000_0000	0000_000001	00 _B									
31	31 30 29 28 27 26		26	25	24	23	22	21	20	19	18	17	16		
	保留 CLKOUT1_SEL<1:0> CLKOU)UT0_SEL<1:0>				C	_KFLT_	BY<7:0>				
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
保留	SY	SCLK_	DIV		保留		PLL_MUX			保留			XTAL_LP	CLK_S	EL<1:0>
		_			bit 31-2	28	_	_							
								CLK	01 智	宇脚轴	加出	选择位	江		
								00:	禁止	时钟	输出				
CL	CLKOUT1_SEL<1:0>			bit27-2	26	R/W	01:	系统	时钟	输出	(51	2分频)			
								10:	LRC	时钟	输出				
								11: HRC 时钟输出(512 分频)							

V1.5 42/352

CLKO0 管脚输出选择位

R/W

bit 25-24

CLKOUT0_SEL<1:0>

			00: 禁止时钟输出					
			01: 系统时钟输出					
			10:					
			10: LRC 时钟输出					
			CLKFLT 旁路控制位					
			8'h55: CLKFLT 旁路					
			其它:不旁路 CLKFLT					
CLKFLT BY<7:0>	bit 23-16	R/W	CLKFLT 为系统时钟滤波器。当系统时钟为					
			PLL 输出 48MHz 时,需旁路 CLKFLT,否则					
		可能会造成系统时钟有时失效; 当系统时钟为						
			其它时钟源时,则不建议旁路 CLKFLT,可进					
			一步提升系统工作稳定性。					
_	bit15	_	_					
			系统时钟后分频选择位					
			000: 1:1					
			001: 1:2					
			010: 1:4					
SYSCLK_DIV<2:0>	bit14-12.	R/W	011: 1:8					
		100: 1:16 101: 1:32						
			101: 1:32					
			110: 1:64					
			111: 1:128					
_	bit11-9	_	_					
			系统时钟选择位					
PLL MUX	bit8	R/W	0 : 使用原始时钟(由 CLK_SEL 选择的时钟)					
			1 : 使用倍频时钟					
_	bit7-3	_						
	<u> </u>		外部 LP 时钟振荡器功耗模式选择位					
XTAL_LP	bit2	_	0: 低功耗(需软件固定设置为 0)					
, , , , <u>,</u>			1: 高功耗(仅供测试使用)					
			原始时钟源选择位					
			00: HRC 时钟 16MHz					
			01: LRC 时钟 32KHz					
CLK_SEL<1:0>	bit1-0	R/W						
			10: XTAL 时钟(由配置位 CFG_OSCMD 设					
			置为 HS,XT 或 LP 模式)					
			11: HRC 时钟 16MHz					

- 注 1: 对 SCU_SCLKENO 寄存器进行写操作前,需要设置 SCU_PROT 寄存器,关闭写保护。
- 注 2: 当系统时钟选择为 PLL 倍频时钟 32MHz 或 48MHz 时,需要先设置 SCU_FLASHWAIT 寄存器的 ACCT<3:0>, 选择合适的 FALSH 读取时间,再将系统时钟切换到 32MHz 或 48MHz,否则会导致芯片指令运行错误。具体 参见 "FLASH 存储器等待功能"章节的描述。
- 注 3: XTAL_LP 位需在 SCU_SCLKEN1 寄存器的 XTAL_EN 位置 1 使能后,方可写入。

系统时钟控制寄存器 1(SCU_SCLKEN1)

偏移地址: 44_H

复位值: 00000000_00000010_00000000_00000010_B

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
				1	保留								PLL_RDY	HRC_RDY	XTAL_RDY
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
保	留	PLL_BYLOCK	PLL_EN	PLL_48M_SEL	PLL_REF_SEL<2:0>		保留						HRC_EN	XTAL_EN	

<u> </u>			1
_	bit 31-19	_	_
			PLL 时钟振荡模式稳定标志位
PLL_RDY	bit18	R	0: 不稳定
			1: 稳定
			内部高速时钟振荡模式稳定标志位
HRC_RDY	bit17	R	0: 不稳定
			1: 稳定
			外部时钟振荡模式稳定标志位
			0: 不稳定
XTAL_RDY	bit16	R	1: 稳定
_			该标志位仅在寄存器位 XTAL_EN=1 时有效,作为
			XTAL 振荡器工作稳定的标志位
_	bit15-14	_	_
			PLL 锁频信号旁路控制位
PLL BYLOCK	bit13	R/W	0: 不旁路
_			1: 旁路
		R/W	PLL 倍频电路工作使能位
	1.1140		0: 禁止
PLL_EN	bit12		1: 使能(使能前需先确认 PLL_REF_SEL 所选择的
			时钟源是否稳定)
			PLL 输出时钟选择位
PLL_48M_SEL	bit11	R/W	0: 输出约 32MHz 时钟
. =====	2.0		1: 输出约 48MHz 时钟
			PLL 输入时钟源选择位
			000: 禁止设置
			001: 禁止设置
			010: 内部 HRC 时钟(约 16MHz)
PLL_REF_SEL<2:0>	bit10-8	R/W	011: 内部 LRC 时钟(约 32KHz)
	21010		100: 外部 4MHz 时钟
			101: 外部 8MHz 时钟
			110: 外部 16MHz 时钟
			111: 外部 32KHz 时钟
	bit7-2	_	——————————————————————————————————————
	DILI-Z		 内部高速时钟振荡电路使能位
HRC_EN	N bit1	R/W	
			0: 禁止

			1: 使能
XTAL_EN	bit0	R/W	外部时钟振荡电路使能位 0:禁止 1:使能

- 注 1:对 SCU_SCLKEN1 寄存器进行写操作前,需要设置 SCU_PROT 寄存器,关闭写保护。
- 注 2: 如果配置字 CFG_OSCMD 将外部 XTAL 时钟配置为 LP 模式,则在软件设置 XTAL_EN=1 后,再由软件设置 寄存器 SCU_SCLKEN0 的位 XTAL_LP=0,将 LP 时钟振荡器设置为低功耗模式。
- 注 3: 在时钟管脚无外接晶振或存在外部干扰的情况下,外部时钟振荡稳定标志位 XTAL_RDY 可能会被误置 1。
- 注 4: 当 PLL 输入时钟源选择为内部 LRC 时钟或外部 32KHz 时钟时,如果 PLL_48M_SEL=1,则 PLL 倍频系数为 1536 倍,其输出时钟频率高于 48MHz,略超过芯片主系统时钟频率范围上限,所以建议此时设置 PLL_48M_SEL=0,或系统时钟后分频设置为 1:2 以上。

外设时钟控制寄存器(SCU_PCLKEN)

偏移地址: 48_H

复位值: 00010011_00010011_00011111_11110111_B

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	保留		I2C0_	保	iği 1	SPI1_EN	SDIO EN	SPI0_EN		保留		保留		UART1_	UART0_
	休田		EN	JK	Ħ	SFII_EN	SFIO_EIN		休田		_EN	ī	木田	EN	EN
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	/G (9)		T32N	T16N3_	T16N2	T16N1_E	T16N0_E	WDT_E	LCD_E	RTC_E	ADC_E	保留	IAP_E	GPIO_EN	SCH EN
	保留		0_EN	EN	_EN	N	N	N	N	N	N	水田	N	GPIO_EN	SCU_EN

_	bit 31-29	_	_
			I2C0 时钟使能位
I2C0_EN	bit28	R/W	0: 禁止
			1: 使能
_	bit 27-26	_	_
			SPI1 时钟使能位
SPI1_EN	bit 25	R/W	0: 禁止
			1: 使能
			SPI0 时钟使能位
SPI0_EN	bit 24	R/W	0: 禁止
			1: 使能
_	bit 23-21	_	_
			EUART0 时钟使能位
EUART0_EN	bit 20	R/W	0: 禁止
			1: 使能
_	bit 19-18		_
			UART1 时钟使能位
UART1_EN	bit 17	R/W	0: 禁止
			1. 使能

V1.5 45/352

			UART0 时钟使能位
UART0_EN	bit 16	R/W	0: 禁止
OANTO_LN	Dit 10	17/ / /	0: 宗止 1: 使能
_	bit 15-13	_	一
	DIL 15-13		
TOONIO EN	h:: 40	D ///	T32N0 时钟使能位
T32N0_EN	bit 12	R/W	0: 禁止
			1: 使能
TAONO EN	b.11.44	D 44/	T16N3 时钟使能位
T16N3_EN	bit 11	R/W	0: 禁止
			1: 使能
T40N0 FN	1 11 40	D 44/	T16N2 时钟使能位
T16N2_EN	bit 10	R/W	0: 禁止
			1: 使能
			T16N1 时钟使能位
T16N1_EN	bit 9	R/W	0: 禁止
			1: 使能
			T16N0 时钟使能位
T16N0_EN	bit 8	R/W	0: 禁止
			1: 使能
			WDT 时钟使能位
WDT_EN	bit 7	R/W	0: 禁止
			1: 使能
			LCDC 时钟使能位
			0: 禁止
LCD_EN	bit 6	R/W	1: 使能
			注: HW3181不能使用LCD, 此位建议设置为禁
			止。
			RTC 时钟使能位
RTC_EN	bit 5	R/W	0: 禁止
			1: 使能
			ADC 时钟使能位
ADC_EN	bit 4	R/W	0: 禁止
			1: 使能
_	bit 3	_	_
			FLASH_IAP 时钟使能位
IAP_EN	bit 2	R/W	0: 禁止
_			1: 使能
			GPIO 时钟使能位
GPIO_EN	bit 1	R/W	0: 禁止
_			1: 使能
			SCU 时钟使能位
SCU_EN	bit 0	R/W	0: 禁止
			1: 使能
	1		1240

V1.5 46/352

注 1: 对 SCU_PCLKEN 寄存器进行写操作前,需要设置 SCU_PROT 寄存器,关闭写保护。

注 2: 使能某外设时钟之前需要先使能 SCU 时钟,即 SCU_PCLKEN 寄存器 SCU_EN 位设置为 1。

以WDT 时钟配置为例:

LDR R0, =SCU_PCLKEN LDR R1, =0X00000001

STR R1, [R0] ; 首先使能 SCU 时钟

LDR R1, =0X00000081

STR R1, [R0] ; 使能 SCU 和 WDT 时钟

注 3: WDT 时钟使能位 WDT_EN=0 时,对 WDT 模块的寄存器读写操作被禁止,但 WDT 计数器仍保持工作状态,

看门狗定时器功能仍有效。

系统唤醒时间控制寄存器(SCU_WAKEUPTIME)

偏移地址: 4CH

复位值: 00000000_00000000_00110011_11111111_B

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
			,	保留									LDOLF	_VOSE	L<2:0>
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
_	FLASHPW PD	CLKFLT EN	MOSC EN					V	VAKEL	IPTIME	E<11:0:	>			

	bit31-19		
_	มแรา-19	_	
			在深度睡眠模式下, LDO 电压输出选择位 000: 1.5V
LDOLP_VOSEL<2:0>	bit18-16	W/R	
			100: 1.4V (推荐使用该档位)
			其它: 仅供测试使用,请勿设置
_	bit15	_	_
			睡眠模式下 FLASH 电源控制位
FLASHPW PD	bit14	W/R	0: 开启
FLASHFW_FD	DILI4	VV/IX	1: 关断(仅供测试使用,实际应用时禁止关断
			FLASH 电源)
			CLKFLT 系统时钟滤波器使能位
			0: 禁止
OLIVELT EN	b.140	D 44/	1: 使能
CLKFLT_EN	bit13	R/W	CLKFLT 为系统时钟滤波器,为保证系统稳定性,
			在芯片正常工作时,需保持使能,在深度睡眠模式
			下,可禁止 CLKFLT,降低芯片功耗
			深度睡眠模式时钟控制位
			0:深度睡眠模式下,自动关闭 HRC、PLL、XTAL
MOSC_EN	bit12	R/W	和时钟滤波器 CLKFLT
_			1:深度睡眠模式下,使能 HRC、PLL、XTAL 和
			时钟滤波器 CLKFLT
WAKEUPTIME<11:0>	bit11-0	R/W	唤醒时间控制位

V1.5 47/352

T_{PCLK}* WAKEUPTIME

- 注 1:对 SCU_WAKEUPTIME 寄存器进行写操作前,需要设置 SCU_PROT 寄存器,关闭写保护。
- 注 2: 对 LDOLP_VOSEL<2:0>寄存器位,需软件在芯片初始化时固定设置为 100,以降低深度睡眠模式下的芯片功耗。
- 注 3: 对 FLASHPW_PD 寄存器位,需软件固定设置为 0,禁止写 1,否则可能会导致芯片工作异常。
- 注 4: 深度睡眠模式下,当 MOSC_EN 为 1 时,HRC、PLL、XTAL 和时钟滤波器还必须各自的控制位 HRC_EN、PLL_EN、XTAL_EN 和 CLKFLT_EN 为 1 时,才实际被使能。
- 注 5: 唤醒时间控制位 WAKEUPTIME<11:0>,用于设定在深度睡眠模式下,被关闭的 HRC、PLL 和 XTAL 时钟模块,在芯片被唤醒后,能够恢复稳定工作的等待时间,通常保持为默认时间值,具体根据芯片在应用系统中的实际工作状况进行调整;如果在深度睡眠模式下,上述各时钟模块仍保持使能,则唤醒时间可以设置为 0。

外部时钟检测控制寄存器(SCU_CCM)

偏移地址: 2C_H

复位值	复位值: 00000000_00000000_000000001B														
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							保留								FLAG
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
			保留				IF		IFS<2:0>	>	ΙE		保留		EN

_	bit31-17	_	_
			CCM 外部时钟停振检测标志位
FLAG	bit16	R	0: 晶振未停振
			1: 晶振停振
_	bit15-9		_
			CCM 中断标志位
			0: 未发生 CCM 触发事件
l IF	bit0	R/W	1: 发生 CCM 触发事件
"	bit8 R/W 边沿模式产生中断标志时,可以写		边沿模式产生中断标志时,可以写1清除标志;
			电平模式产生中断标志时,该标志只读,触发电平消失
			后,中断标志自动清零。
			CCM 中断标志产生模式选择位
			000: CCM_FLAG 上升沿产生中断,晶振停振
IEO 40-05	L:17 F	D 447	001: CCM_FLAG 下降沿产生中断,晶振恢复振荡
IFS<2:0>	bit7-5	R/W	010: CCM_FLAG 高电平产生中断,晶振停振
			011: CCM_FLAG 低电平产生中断,晶振恢复振荡
			1xx: CCM_FLAG 变化(上升或下降沿)产生中断
			外部时钟停振中断使能位
ΙE	bit 4	R/W	0: 禁止
			1: 使能
_	bit3-1	_	_
EN	bit0	R/W	外部时钟停振检测使能位

V1.5 48/352

	0: 禁止
	1: 使能

注:对 SCU_CCM 寄存器进行写操作前,需要设置 SCU_PROT 寄存器,关闭写保护。

PLL 锁定中断控制寄存器(SCU_PLLLKCON)

偏移地址: 30H

复位值: 00000000_00000000_00000000_00000000B

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							保留								LK_FLAG
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
保留						IF	保留	LK	(_IFS<2:	0>		保留		ΙE	

		T	T
_	bit31-17	_	_
		R	PLL 锁定检测标志位
LK_FLAG	bit16	K	0: PLL 未锁定
			1: PLL 锁定,锁频成功
_	bit15-9	_	_
			PLL 中断标志位
			0: 未发生 PLL 锁定标志触发事件
	1.10	D 44/	1: 发生 PLL 锁定标志触发事件
IF	bit8	R/W	边沿模式产生中断标志时,可以写1清除标志;
			电平模式产生中断标志时,该标志只读,触发电平消失
			后,中断标志自动清零。
	bit7		_
	Diti		
			PLL 锁定标志产生模式选择位
			000: PLL 锁定标志上升沿产生中断,锁频成功
LK 150 < 2:0>	bitc 4	R/W	001: PLL 锁定标志下降沿产生中断,锁频失败
LK_IFS<2:0>	bit6-4	R/VV	010: PLL 锁定标志高电平产生中断,锁频成功
			011: PLL 锁定标志低电平产生中断,锁频失败
			1xx: PLL 锁定标志变化(上升或下降沿)产生中断
	bit3-1		
			PLL 锁定中断使能位
ΙE	bit0	R/W	0: 禁止
			1: 使能

注 1: 对 SCU_PLLLKCON 寄存器进行写操作前,需要设置 SCU_PROT 寄存器,关闭写保护。

注 2: SCU_PLLLKCON 寄存器中的标志位 LK_FLAG=1 或 SCU_SCLKEN1 寄存器中的标志位 PLL_RDY=1 时,均表示 PLL 锁频成功并稳定。

V1.5 49/352

2.6.5 系统时钟应用说明

以下操作都已关闭系统保护寄存器 SCU_PROT, 且使能了 SCU_PCLKEN 寄存器的 SCU 时钟使能位 SCU_EN。

2. 6. 5. 1 外部时钟XTAL

使用外部时钟 XTAL:

SWITCH XTAL PROC

PUSH {LR}

LDR R0, =SCU_SCLKEN1

LDR R1, [R0]

LDR R2, =0X01

ORRS R1, R1, R2

STR R1, [R0] ;使能 XTAL_EN

WAIT_XTAL_FLAG

LDR R0, =SCU_SCLKEN1

LDR R1, [R0]

LDR R2, =0X010000

TST R1, R2

BEQ WAIT XTAL FLAG ;等待 XTAL RDY

;如果系统时钟为外部 LP 低速时钟,并工作在低功耗模式,则设置如下:

LDR R0, =SCU_SCLKEN0

LDR R1, =0X02

STRB R1, [R0] ;设置 LP 低速时钟为低功耗模式

POP {PC}

ALIGN

LTORG

ENDP

2.6.5.2 内部高速时钟HRC

使用内部高速时钟 HRC:

SWITCH_HRC PROC

PUSH {LR}

LDR R0, =SCU_SCLKEN1

LDR R1, [R0] LDR R2, =0X02 ORRS R1, R1, R2

STR R1, [R0] ;使能 HRC_EN

WAIT_HRC_FLAG

LDR R0, =SCU_SCLKEN1

LDR R1, [R0]

LDR R2, =0X020000

V1.5 50/352

TST R1, R2 BEQ WAIT_HRC_FLAG ;等待 HRC_RDY LDR R0, =SCU_SCLKEN0 LDRB R1, [R0] LDR R2, =0XFC R1, R1, R2 ANDS ;系统时钟选用 HRC STRB R1, [R0] POP {PC} ALIGN **LTORG ENDP**

2.6.5.3 内部低速时钟LRC

使用内部低速时钟 LRC:

SWITCH_LRC PROC PUSH {LR} LDR R0, =SCU_SCLKEN0 R1, [R0] LDRB R2, =0XFC LDR ANDS R1, R1, R2 LDR R2, =0X01ORRS R1, R1, R2 STRB R1, [R0] ;系统时钟选用 LRC POP {PC} ALIGN **LTORG ENDP**

2. 6. 5. 4 锁相环PLL

使用 PLL 前必须先使能 PLL 输入源时钟使能位,且等待输入时钟源稳定。

以 PLL 输入时钟选择为外部 16MHz 时钟,输出时钟为 48MHz 为例:

SWITCH_XTAL16M_PLL48M PROC
PUSH {LR}
LDR R0, =SCU_SCLKEN1
LDR R1, [R0]
LDR R2, =0X01
ORRS R1, R1, R2
STR R1, [R0]

;使能 XTAL_EN,注意外接振荡器必须是 16MHz。

WAIT XTAL FLAG

LDR R0, =SCU_SCLKEN1

LDR R1, [R0]

V1.5 51/352

LDR R2, =0X010000 TST R1, R2 WAIT_XTAL_FLAG BEQ ;等待 XTAL_RDY LDR R0, =SCU_SCLKEN1 LDR R1, =0X1E ;配置 PLL 输入时钟选择 STRB R1, [R0, #0X01] ;PLL 锁频信号不旁路, 使能 PLL 模块 WAIT_PLL_FLAG R0, =SCU_SCLKEN1 LDR LDR R1, [R0] LDR R2, =0X040000 TST R1, R2 BEQ WAIT PLL FLAG ;等待 PLL RDY LDR R0, =SCU_SCLKEN0 LDR R1, [R0] LDR R2, =0X0100 ORRS R1, R1, R2 STR R1, [R0] ;系统时钟选用 PLL 倍频时钟 POP {PC} ALIGN **LTORG ENDP** 关闭 PLL: POWER_OFF_PLL PROC PUSH {LR} LDR R0, =SCU_SCLKEN0 LDRB R1, [R0, #0X01] LDR R2, =0XFE ANDS R1, R1, R2 STRB R1, [R0, #0X01] ;系统时钟选用原始时钟 LDR R0, =SCU_SCLKEN1 LDRB R1, [R0, #0X01] LDR R2, =0X0F ANDS R1, R1, R2 STRB R1, [R0, #0X01] ;关断 PLL 模块 POP {PC} **ALIGN LTORG ENDP** 2. 6. 5. 5 时钟滤波CLKFLT 使用 CLKFLT: POWER_ON_CFT PROC PUSH {LR}

V1.5 52/352

LDR R0, =SCU_WAKEUPTIME

LDRB R1, [R0, #0X01]

LDR R2, =0X02

ORRS R1, R1, R2

STRB R1, [R0, #0X01] ;使能 CLKFLT_EN

LDR R0, =SCU_SCLKEN0

LDRB R1, =0X55

STRB R1, [R0, #0X02] ;系统时钟选用滤波后时钟

POP {PC}

ALIGN

LTORG

ENDP

关闭 CLKFLT:

POWER_OFF_CFT PROC

PUSH {LR}

LDR R0, =SCU_SCLKEN0

LDRB R1, =0X00

STRB R1, [R0, #0X02] ;系统时钟选用滤波前时钟

LDR R0, =SCU_WAKEUPTIME

LDRB R1, [R0, #0X01]

LDR R2, =0XFD

ANDS R1, R1, R2

STRB R1, [R0, #0X01] ;关闭 CLKFLT_EN

POP {PC}

ALIGN

LTORG

ENDP

53/352

2.7 中断和异常处理

2.7.1 中断和异常

Cortex-M0 内核支持嵌套向量中断控制器 NVIC(Nested Vectored Interrupt Controller), 具体功能如下:

- ◇ 支持中断嵌套
- ◇ 支持中断向量
- ◇ 支持中断优先级动态调整
- ◇ 支持中断可屏蔽

对 Cortex-M0 内核来说,打断程序正常执行流程的事件均称之为异常,中断也是其中一种异常。为便于理解,本文档将内核的中断等事件称为异常,将外设模块的中断称为中断。

异常/中断优先级操作说明:

操作类型	描述
	产生条件: ISR 或线程正在执行时,出现新的优先级更高的异常/中断。
抢占	操作结果: 如果当前处于线程状态,则产生异常/中断挂起中断; 如果当前处于
	ISR 状态,则产生中断嵌套,处理器自动保存工作状态并压栈。
末尾连锁	产生条件: 当前 ISR 执行结束, 正在返回时, 出现新的优先级更高的异常/中断。
木尾廷钡 	操作结果:跳过出栈操作,处理新的异常/中断。
	产生条件: 当前 ISR 执行结束,正在返回时,没有出现新的优先级更高的
返回	异常/中断。
	操作结果:执行出栈操作,并将处理器状态恢复为进入 ISR 之前的状态。
5日 本	产生条件: 当前 ISR 执行开始, 正在保存时, 出现新的优先级更高的异常/中断。
迟来	操作结果:处理器转去处理优先级更高的异常/中断。

表 2-2 异常/中断优先级操作类型说明说明表

注 1: ISR – Interrupt Service Routine, 中断服务程序。

异常/中断优先级:

编号	类型	优先级	简介
0	N/A	N/A	没有异常在运行
1	复位	-3 (最高)	复位
2	NMI	-2	不可屏蔽中断(来自外设 NMI 中断输入)
3	Hard Fault	-1	所有被禁用的 Fault,都将升级为 Hard Fault
4~10	保留	NA	_
11	SVC	可编程控制	系统服务调用
12~13	保留	NA	-
14	PendSV	可编程控制	为系统设备而设的"可悬挂请求"
15	SysTick	可编程控制	系统定时计数器
16	IRQ0	可编程控制	外设中断 0
17	IRQ1	可编程控制	外设中断 1
47	IRQ31	可编程控制	外设中断 31

表 2-3 异常/中断优先级列表

V1.5 54/352

Cortex-M0 支持如下异常/中断:

NMI 中断、Hard Fault 异常、SVC 异常、PendSV 异常、SysTick 异常和 32 个外设中断请求 IRQ0~IRQ31。

其中 Hard Fault 异常、SVC 异常、PendSV 异常、SysTick 异常为 Cortex-M0 内核异常源,只受 Cortex-M0 内核控制,而 NMI 中断与 32 个 IRQ 可由芯片配置控制。

虽然 Cortex-M0 对 NMI 不支持中断使能位,但为了防止芯片上电初始化完成前,误产生 NMI 中断源,而误进中断,芯片提供了 NMI 使能位 NMIEN,可在 NMI 中断源配置完成后 再设置 NMIEN=1。

对于 32 个 IRQ, Cortex-M0 内核提供 32 个 IRQ 使能位,可对每个中断请求独立控制。 配置 NVIC_ISER 和 NVIC_ICER 中断控制寄存器可使能或禁止 IRQ。

配置 NVIC_PR0~NVIC_PR7 优先级控制寄存器,可设置 IRQ0~IRQ31 的中断优先级。如果同时产生多个 IRQ 请求,则最先响应优先级最高的 IRQ;如果同时产生多个相同最高优先级的 IRQ 请求,则按照中断向量分配表,最先响应向量表编号最低的 IRQ,即如果同时产生中断优先级相同的 IRQ0 与 IRQ1,则先响应 IRQ0。

2.7.2 中断和异常向量的分配

编号	类型	功能	说明
0~15	异常	_	Cortex-M0 内核异常,包括 NMI 不可屏蔽中断
16	IRQ0	PINT0 中断	外部端口中断 0
17	IRQ1	PINT1 中断	外部端口中断 1
18	IRQ2	PINT2 中断	外部端口中断 2
19	IRQ3	PINT3 中断	外部端口中断 3
20	IRQ4	PINT4 中断	外部端口中断 4
21	IRQ5	PINT5 中断	外部端口中断 5
22	IRQ6	PINT6 中断	外部端口中断 6
23	IRQ7	PINT7 中断	外部端口中断 7
24	IRQ8	T16N0 中断	16 位定时器/计数器 0 中断
25	IRQ9	T16N1 中断	16 位定时器/计数器 1 中断
26	IRQ10	T16N2 中断	16 位定时器/计数器 2 中断
27	IRQ11	T16N3 中断	16 位定时器/计数器 3 中断
28	IRQ12	T32N0 中断	32 位定时器/计数器 0 中断
29	IRQ13	Reserved	预留
30	IRQ14	Reserved	预留
31	IRQ15	Reserved	预留
32	IRQ16	WDT 中断	看门狗中断
33	IRQ17	RTC 中断	实时时钟中断
34	IRQ18	KINT 中断	外部按键输入中断
35	IRQ19	ADC 中断	模数转换中断
36	IRQ20	Reserved	预留
37	IRQ21	LVD 中断	低电压检测中断

V1.5 55/352

编号	类型	功能	说明
38	IRQ22	PLLLK 中断	PLL 失锁中断
39	IRQ23	UART0 中断	UART0 中断
40	IRQ24	UART1 中断	UART1 中断
41	IRQ25	EUART0 中断	EUART0 中断
42	IRQ26	Reserved	预留
43	IRQ27	SPI0 中断	SPI0 中断
44	IRQ28	SPI1 中断	SPI1 中断
45	IRQ29	I2C0 中断	I2C0 中断
46	IRQ30	Reserved	预留
47	IRQ31	CCM 中断	外部振荡器停振检测中断

表 2-4 IRQ 分配列表

2.7.3 中断向量表的重映射

Cortex-M0 内核本身并不支持中断向量表的重映射,在 HW3181 中有两个特殊功能寄存器 "中断向量表重映射使能寄存器"和"中断向量表偏移寄存器",可以支持中断向量表的 重映射。具体的使用方式可参考 Flash 自编程 (IAP) 相关章节的描述。

2.7.4 特殊功能寄存器

不可屏	蔵中断控	的寄存	器(SCU	_NMICC	ON)										
偏移地	址: 04 н														
复位值	: 00000	000_000	000000_	0000000	00000	0000 _B									
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							1	呆留							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
保留											NM	IICS<4:0	>		NMIEN
保留											NM	IICS<4:0	 >		NMIEN

_	bit31-6	_	_
			NMI 不可屏蔽中断选择位
			00000: IRQ0
NMICS<4:0>	bit5-1	R/W	00001: IRQ1
			11111: IRQ31
			NMI 不可屏蔽中断使能位
NMIEN	bit0	R/W	0: 禁止
			1: 使能

注 1: 对 SCU_NMICON 寄存器进行写操作前,需要设置 SCU_PROT 寄存器,关闭写保护。

V1.5 56/352

中断向量表重映射使能寄存器(SCU_TBLREMAPEN)

偏移地址: 60_H

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	保留														
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	保留												EN		

_	bit31-1		_
EN	bit0	R/W	中断向量表重映射使能 0: 中断向量表位于 Flash Memory 的"0"地址开始的一段空间(默认状态); 目前共支持 48 个向量,因此,这段空间的大小为 192 字节; 1: 中断向量表位于"中断向量表偏移寄存器"指定的地址开始的 192 字节空间。

注:对 SCU_TBLREMAPEN 寄存器进行写操作前,需要设置 SCU_PROT 寄存器,关闭写保护。

中断向量表偏移寄存器(SCU_TBLOFF)

偏移地址: 64

州がシルビ	址: 04H														
复位值	: 00100	000_000	000000_0	0000000	0_00000	000 _B									
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	TBLOFF<31:16>														
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	TBLOFF<15:8>										TBLOF	F<7:0>			

TBLOFF<31:0>	bit31-0	R/W	中断向量表偏移地址 该寄存器存放重映射后的中断向量表所在的起始地址,"中 断向量表重映射使能寄存器"为"1"时有效。
			高 24 位 TBLOFF<31:8>可读可写,但低 8 位 TBLOFF<7:0> 只读,不可写,且读取时返回全零。

注:该地址为起始地址是有要求的:必须先求出系统中共有多少个向量,再把这个数字向上增大到是 2 的整次幂,而起始地址必须对齐到后者的边界上。如果一共有 32 个中断,则共有 32+16(系统异常)=48 个向量,向上增大到 2 的整次幂后值为 64,因此地址值必须能被 64×4=256 整除,从而合法的起始地址可以是: 0x000,0x100,0x200 等。

V1.5

57/352

硬件错误标志寄存器(SCU_FAULTFLAG)

偏移地址: 0C_H

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
								保	留						
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	保留								FLAG2	FLAG1	FLAG0				

_	bit31-3	_	_
FLAG2	bit2	R/W	硬件错误 2 标志位 0: 未发生在异常区域进行写入操作 1: 发生在异常区域进行写入操作(硬件自动置 1, 软件写 1 清除)
FLAG1	bit1	R/W	硬件错误 1 标志位 0: 未发生在异常区域进行取指操作 1: 发生在异常区域进行取指操作(硬件自动置 1, 软件写 1 清除)
FLAG0	bit0	R/W	硬件错误 0 标志位 0: 未发生读指令代码为空 1: 发生读指令代码为空(硬件自动置 1,软件写 1 清除)

注 1: 读指令代码为空表示 Cortex-M0 内核读 Flash 程序存储器的指令时,读到的值为 FFFFFFFH。

注 2: 清除硬件错误标志位时,需要设置 SCU_PROT 寄存器,关闭写保护。

以下 NVIC 寄存器列表及基址参见: 3.5.2 中断控制器 (NVIC) 寄存器列表

IRQ0~31 置中断请求使能寄存器(NVIC_ISER)

偏移地址: 00_H

复位值: 00000000_00000000_00000000_00000000B 23_ 29 28 27 26 25 24 22 21 20 19 18 17 16 SETENA<31:16> 14 13 12 11 10 8 7 6 5 4 0 15 3 1 SETENA<15:0>

			IRQx 使能位
SETENA<31:0>	bit31-0	R/W	0: 中断禁止 1: 中断使能 软件写 1 使能中断请求,写 0 无效

注:对 NVIC_ISER 寄存器中的各 IRQx 使能位,写 0 无效,写 1 才使能中断请求;读操作时,实际是读取 IRQx 中断使能的状态,读取的值为 1 表示中断使能,为 0 表示中断禁止。

V1.5

IRQ0~31 清中断请求使能寄存器(NVIC_ICER)

偏移地址: 80_H

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							CLRENA	\ <31:16>	•						
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	•		•				CLREN	A <15:0>	•	•			•	•	

			IRQx 禁止位
CLRENA<31:0>	bit31-0	R/W	0: 中断禁止
OLINA VOI.09	51131-0	1000	1: 中断使能
			软件写 1 禁止中断请求,写 0 无效

注:对 NVIC_ICER 寄存器中的各 IRQx 禁止位,写 0 无效,写 1 才禁止中断请求;读操作时,实际是读取 IRQx 中断使能的状态,读取的值为 1 表示中断使能,为 0 表示中断禁止。

IRQ0~31 置中断挂起寄存器(NVIC_ISPR)

偏移地址: 100_H

复位值: 00000000 00000000 00000000 00000000_B

> 4 1 18															
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
						5	SETPENI	D <31:16	>						
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	•						SETPEN	D <15:0	>	•			•	•	

			置 IRQx 挂起位						
SETPEND<31:0>	bit31-0	R/W	0: 中断未挂起						
0211 2115 0110			1: 中断挂起						
			软件写 1 挂起中断,写 0 无效						

注:对 NVIC_ISPR 寄存器中的各 IRQx 挂起位,写 0 无效,写 1 才挂起中断;读操作时,实际是读取 IRQx 中断挂起的状态,读取的值为 1 表示中断挂起,为 0 表示中断未挂起。

IRQ0~31 清中断挂起寄存器(NVIC_ICPR)

偏移地址: 180_H

复位值: 00000000_00000000_00000000_00000000_B

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
						C	CLRPENI	O <31:16	>						
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	CLRPEND <15:0>														

V1.5 59/352

			清 IRQx 挂起位
CLRPEND<31:0>	bit31-0	R/W	0: 中断未挂起 1: 中断挂起 软件写 1 清除中断挂起,写 0 无效

注:对 NVIC_ICPR 寄存器中的各 IRQx 清挂起位,写 0 无效,写 1 才清除中断挂起;读操作时,实际是读取 IRQx 中断挂起的状态,读取的值为 1 表示中断挂起,为 0 表示中断未挂起。

IRQ0~3 优先级控制寄存器(NVIC_PR0)

偏移地址: 300_H

复位值: 00000000_00000000_000000000_B

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
PRI_3	PRI_3<1:0> 保留							PRI_2<1:0> 保留							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
PRI_1	<1:0>	保留						PRI_0)<1:0>			保	留		

PRI_3<1:0>	bit31-30	R/W	IRQ3 优先级设置位 00:最高优先级 11:最低优先级
_	bit29-24	_	_
PRI_2<1:0>	bit23-22	R/W	IRQ2 优先级设置位 00:最高优先级 11:最低优先级
_	bit21-16	_	_
PRI_1<1:0>	bit15-14	R/W	IRQ1 优先级设置位 00:最高优先级 11:最低优先级
_	bit13-8	_	_
PRI_0<1:0>	bit7-6	R/W	IRQ0 优先级设置位 00: 最高优先级 11: 最低优先级
_	bit5-0	_	_

IRQ4~7 优先级控制寄存器(NVIC_PR1)

偏移地址: 304_H

复位值: 00000000_00000000_00000000_00000000B

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
PRI_7	7<1:0>			保	:留			PRI_6	S<1:0>			保	留		
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
PRI_5	5<1:0>			保	:留			PRI_4	<1:0>			保	留		

V1.5 60/352

			IRQ7 优先级设置位
PRI_7<1:0>	bit31-30	R/W	00: 最高优先级
			11: 最低优先级
_	bit29-24	_	_
			IRQ6 优先级设置位
PRI_6<1:0>	bit23-22	R/W	00: 最高优先级
			11: 最低优先级
_	bit21-16	_	_
			IRQ5 优先级设置位
PRI_5<1:0>	bit15-14	R/W	00: 最高优先级
			11: 最低优先级
_	bit13-8	_	_
			IRQ4 优先级设置位
PRI_4<1:0>	bit7-6	R/W	00: 最高优先级
			11: 最低优先级
_	bit5-0	_	_

IRQ8~11 优先级控制寄存器(NVIC_PR2)

保留

偏移地址: 308_H

PRI_9<1:0>

复位值	i: 00000	000_000	000000_0	0000000	0_00000	000 _B									
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
PRI_1	1<1:0>			保	留			PRI_10<1:0> 保留							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

PRI_8<1:0>

PRI_11<1:0>	bit31-30	R/W	IRQ11 优先级设置位 00:最高优先级 11:最低优先级
_	bit29-24	_	_
PRI_10<1:0>	bit23-22	R/W	IRQ10 优先级设置位 00: 最高优先级 11: 最低优先级
_	bit21-16	_	_
PRI_9<1:0>	bit15-14	R/W	IRQ9 优先级设置位 00: 最高优先级 11: 最低优先级
_	bit13-8	_	_
PRI_8<1:0>	bit7-6	R/W	IRQ8 优先级设置位 00: 最高优先级 11: 最低优先级
_	bit5-0	_	_

V1.5 61/352

保留

IRQ12~15 优先级控制寄存器(NVIC_PR3)

偏移地址: 30C_H

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
PRI_1	5<1:0>			保	留			PRI_1	4<1:0>			保	:留		
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
PRI_1	3<1:0>			保	留			PRI_1	2<1:0>			保	:留		

DDI 45 (4.0)	F104 00	DAA	IRQ15 优先级设置位
PRI_15<1:0>	bit31-30	R/W	00: 最高优先级
			11: 最低优先级
_	bit29-24	_	_
			IRQ14 优先级设置位
PRI_14<1:0>	bit23-22	R/W	00: 最高优先级
			11: 最低优先级
_	bit21-16	_	_
			IRQ13 优先级设置位
PRI_13<1:0>	bit15-14	R/W	00: 最高优先级
			11: 最低优先级
_	bit13-8	_	_
			IRQ12 优先级设置位
PRI_12<1:0>	bit7-6	R/W	00: 最高优先级
			11: 最低优先级
_	bit5-0	_	_

IRQ16~19 优先级控制寄存器(NVIC_PR4)

偏移地址: 310_H

复位值: 00000000_00000000_00000000_00000000B

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
PRI_1	9<1:0>			保	留			PRI_1	8<1:0>			保	:留		
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
PRI_1	7<1:0>			保	留			PRI_1	6<1:0>			保	:留		

PRI_19<1:0>	bit31-30	R/W	IRQ19 优先级设置位 00:最高优先级 11:最低优先级
_	bit29-24	_	_
PRI_18<1:0>	bit23-22	R/W	IRQ18 优先级设置位 00: 最高优先级 11: 最低优先级
_	bit21-16	_	_

V1.5

PRI_17<1:0>	bit15-14	R/W	IRQ17 优先级设置位 00: 最高优先级 11: 最低优先级
_	bit13-8	_	_
PRI_16<1:0>	bit7-6	R/W	IRQ16 优先级设置位 00: 最高优先级 11: 最低优先级
_	bit5-0	_	_

IRQ20~23 优先级控制寄存器(NVIC_PR5)

偏移地址: 314	н													
复位值: 00000	0000_0000	00000_0	00000000	_000	00000 _B									
31 30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
PRI_23<1:0>			保	留			PRI_2	2<1:0>			保	留		
15 14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
PRI_21<1:0>			保	留			PRI_2	0<1:0>			保	留		
						IRC	23 优	先级设	置位					
PRI_23<	1:0>	bit	t31-30		R/W	00:	最高	优先级						
						11:	最低位	优先级						
_		bit	t29-24		_	_								
						IRC	22 优:	先级设	置位					
PRI_22<	1:0>	bit	t23-22		R/W	00:	最高	优先级						
						11:	最低位	优先级						
_		bit	t21-16		_	_								
						IRC	21 优:	先级设	置位					
PRI_21<	1:0>	bit	t15-14		R/W	00:	最高	优先级						
						11:	最低位	优先级						
_		b	it13-8		_	_								
						IRC	20 优	先级设	置位					
PRI_20<	1:0>	b	oit7-6		R/W	00:	最高	优先级						
						11:	最低位	优先级						
_		b	oit5-0		_	_								

IRQ24~27 优先级控制寄存器(NVIC_PR6)

偏移地址: 318_H

PRI_27<1:0> 保留 PRI_26<1:0> 保留 PRI_25<1:0> 保留 PRI_24<1:0> 保留

V1.5 63/352

			IRQ27 优先级设置位
PRI_27<1:0>	bit31-30	R/W	00: 最高优先级
			11: 最低优先级
_	bit29-24	_	_
			IRQ26 优先级设置位
PRI_26<1:0>	bit23-22	R/W	00: 最高优先级
			11: 最低优先级
_	bit21-16	_	_
			IRQ25 优先级设置位
PRI_25<1:0>	bit15-14	R/W	00: 最高优先级
			11: 最低优先级
_	bit13-8	_	_
			IRQ24 优先级设置位
PRI_24<1:0>	bit7-6	R/W	00: 最高优先级
			11: 最低优先级
_	bit5-0		_

IRQ28~31 优先级控制寄存器(NVIC_PR7)

偏移地址: 31C_H

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
PRI_3	1<1:0>			保	留			PRI_3	0<1:0>			保	留		
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

1			
			IRQ31 优先级设置位
PRI_31<1:0>	bit31-30	R/W	00: 最高优先级
			11: 最低优先级
_	bit29-24	_	_
			IRQ30 优先级设置位
PRI_30<1:0>	bit23-22	R/W	00: 最高优先级
			11: 最低优先级
_	bit21-16	_	_
			IRQ29 优先级设置位
PRI_29<1:0>	bit15-14	R/W	00: 最高优先级
			11: 最低优先级
_	bit13-8	_	_
			IRQ28 优先级设置位
PRI_28<1:0>	bit7-6	R/W	00: 最高优先级
			11: 最低优先级
_	bit5-0	_	_

V1.5 64/352

REVISION<3:0>

2.8 系统控制块 (SCB)

2.8.1 概述

系统控制块提供芯片内核系统实现的状态信息,并对内核系统工作进行控制。

SCB 寄存器列表和基址参见: 3.5.3 系统控制块(SCB)寄存器列表

2.8.2 特殊功能寄存器

SCB_CPUID 寄存器(SCB_CPUID)

偏移抽址.00。

偏移地	址: 00 _H														
复位值	复位值: 01000001_00001100_11000010_00000000 _B														
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
		IM	PLEME	NTER<7	:0>			VARIAN	NT<3:0>			CONSTA	ANT<3:0	>	
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

PARTNO<11:0>

IMPLEMENTER<7:0>	bit31-24	R	处理器实现者编号			
IMPLEMENTER 1.02	บเเว 1-24	K	0x41, ARM			
VARIANT<3:0>	bit23-20	R	主版本号			
VARIANT S.UZ	DI123-20	K	R=0x0,作为 rnpn 版本编号格式中的主要编号			
CONSTANT<3:0>	hi+10 16	bit19-16				
CONSTANT<5.02	טונוש-וט	K	0xC, ARMv6-M			
PARTNO<11:0>	hi+1 <i>E 1</i>	R	处理器分类号			
PARTNUSTI.UZ	bit15-4	K	0xC20, Cortex-M0			
REVISION<3:0>	bit3-0	R	次版本号			
	มแจ-0	K	P=0x0,作为 rnpn 版本编号格式中的次要编号			

中断控制和状态寄存器(SCB_ICSR)

偏移地址: 04_H

复位值: 00000000_00000000_000000000_B

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
NMIPENDSET		保	:留		PENDSTSET	PENDSTCLR			ISRPENDDING		保	:留		VECTPEN	NDING<5:4>
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
VECTPENDING<3:0>					保留							VEC	TACTIV	E<5:0>	

NMIPENDSET	bit31	R/W	NMI 中断挂起控制位 0: 不置 NMI 中断挂起 1: 置 NMI 中断挂起
_	bit30-27	_	_
PENDSTSET	bit26	R/W	置 SysTick 异常挂起位

V1.5 65/352

		I	
			0: 无效
			1: 置 SysTick 异常挂起
			清 SysTick 异常挂起位
PENDSTCLR	bit25	W	0: 无效
			1:清除 SysTick 异常挂起
_	bit24-23	_	_
			中断挂起标志位
ISRPENDDING	bit22	R	0: 无中断挂起
			1: 有中断挂起
_	bit21-18	_	_
			当前的挂起中,优先级最高的异常/中断号
VECTOENDING	h::47 40	_	0x0: 无挂起异常/中断
VECTPENDING	bit17-12	R	非 0: 当前被挂起的异常/中断中,优先级最高的异常
			/中断号
_	bit11-6	_	_
			当前被处理的异常/中断号
VECTACTIVE	bit5-0	R	0x0: 线程 (Thread) 模式
			非 0: 当前被处理的异常/中断号

应用中断和复位控制寄存器(SCB_AIRCR)

偏移地址:0C _H															
复位值: 111111010_00000101_00000000_00000000 _B															
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							VEC	CTKEY	′<15:0>	>					
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
ENDIANNESS						但	:留						SYSRESET	VECTCLR	保
LINDIANNESS						IA	. ш						REQ	ACTIVE	留

VECTKEY<15:0>	bit31-16	W	向量关键码位 只能写 0x05FA ,其它无效
ENDIANNESS	bit15	R	存储器数据格式选择位 0: 小端格式 1: 大端格式
_	bit14-3	_	_
SYSRESETREQ	bit2	W	系统复位请求位 0:无效 1:请求系统复位,复位后自动清零
VECTCLRACTIVE	bit1	W	异常/中断状态清除位 该位只能写 0;写 1 会产生 HardFault 异常
_	bit0	_	_

注 1: 寄存器 SCB_AIRCR 只能进行字写入,且高半字只能写入 0x05FA, 否则对该寄存器的写入操作无效。

系统控制器	存器(S	CB_S	CR)

偏移地址: 10_H

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
									保旨	留					

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
					/m da						SEVONP	/m ròn	SLEEP	SLEEP	/ा हेत
					保留						END	保留	DEEP	ONEXIT	保留

_	bit31-5	_	_
SEVONPEND	bit4	R/W	中断被挂起时,是否作为唤醒事件的选择位 0:中断被挂起时,不作为唤醒事件 1:中断被挂起时,作为唤醒事件
_	bit3	_	_
SLEEPDEEP	bit2	R/W	休眠模式选择位 0: 浅睡眠模式 1: 深度睡眠模式
SLEEPONEXIT	bit1	R/W	从 ISR 中断处理程序返回到线程模式时,是否进入 休眠状态的选择位 0:不进入休眠状态 1:进入休眠状态
_	bit0	_	_

配置和控制寄存器(SCB_CCR)

偏移地址: 14_H

复位值: 00000000_00000000_00000010_00001000_B

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							,	保留							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		保	留			STKALIGN			保留			UNALIGN_TRP		保留	

_	bit31-10		_
STKALIGN	bit9	R	非 堆栈对齐标志位 读取始终为 1,指示异常入口 8 字节堆栈对齐
_	bit8-4		_
UNALIGN_TRP	bit3	R	字或半字访问操作的非对齐故障标志位 读取始终为 1,指示非对齐访问产生硬故障
_	bit2-0	_	_

V1.5 67/352

系统处理程序优先级寄存器 2(SCB_SHPR2)

偏移地址: 1C_H

复位值: 00000000_00000000_00000000_000000000B

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
PRI_	PRI_11<1:0>							保	韶						
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
							保留								

PRI_11<1:0>	bit31-30	R/W	SVCall(异常编号 11)的优先级设置位
_	bit29-0	_	_

系统处理程序优先级寄存器 3(SCB_SHPR3)

偏移地址: 20_H

复位值: 00000000_00000000_00000000_00000000B

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
PRI_1	5<1:0>			保	:留			PRI_14<1:0> 保留							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
							保	留							

PRI_15<1:0>	bit31-30	R/W	SysTick(异常编号 15)的优先级设置位
_	bit29-24	_	_
PRI_14<1:0>	bit23-22	R/W	PendSV(异常编号 14)的优先级设置位
_	bit21-0	_	_

2.9 系统定时器 (SYSTICK)

2.9.1 概述

- ◇ 24 位系统递减计数器,递减至零可自动重载计数初值
- ◇ 可产生周期性 SysTick 异常,用作嵌入式操作系统的多任务调度计数器;或对于无嵌入式操作系统的运用,可用于调用需周期性执行的任务
- ◇ SysTick 亦可用作普通定时器,如用于延时计数
- ◇ SysTick 异常优先级可由系统处理优先级寄存器 SHPR3 的 PRI 15<1:0>设定
- ◇ SysTick 异常处理的挂起可由中断控制和状态寄存器 SCB_ICSR 的 PENDSTSET 位设置
- ◇ 工作时钟可为系统时钟 HCLK 或其三分频

SysTick 是一个系统递减计数器,配置 SYST_RVR 寄存器,可设定计数初值。当 SysTick 计数为 0 时,COUNTFLAG 状态位置 1,并重载 SYST_RVR 中的计数初值。在处理器 调试停机时,SysTick 停止计数。在计数过程中,如果将 SYST_RVR 寄存器设置为 0,则计数器递减计数到 0 后,停止计数。

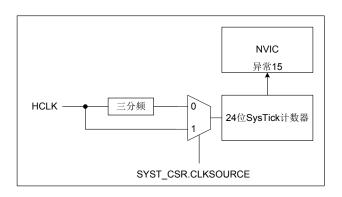


图 2-10 系统定时器框图

SysTick 的当前计数值可以通过读 SYST_CVR 寄存器获得。如果写 SYST_CVR 寄存器,则将该寄存器清零,并且将 COUNTFLAG 位清零,写操作不会触发 SysTick 异常事件。

访问 SysTick 寄存器时,需使用字操作方式。配置 SysTick 计数器的步骤如下:

- 1) 设置计数器重装值寄存器 SYST_RVR。
- 2) 清除计数器当前值寄存器 SYST_CVR。
- 3) 设置控制和状态寄存器 SYST_CSR。

SysTick 寄存器列表和基址参见: 3.5.1 系统定时器(SYSTICK)寄存器列表。

2.9.2 特殊功能寄存器

SYSTICK 控制和状态寄存器(SYST_CSR)

偏移地址: 10_H

复位值: 00000000_00000000_000000000B

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
								保	留						COUNTFLAG
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
						保留							CLKSOURCE	TICKINT	ENABLE

_	bit31-17		_
			SYSTICK 递减计数到零的标志位
COUNTFLAG	bit16	R	0; 未计数到 0
COUNTFLAG	DILTO	K	1: 计数到 0
			该位读操作后清零,或写 SYST_CVR 寄存器清零
_	bit15-3	_	_
			SYSTICK 时钟源选择位
CLKSOURCE	bit2	R/W	0: 基准时钟
			1: 处理器时钟
			SYSTICK 异常挂起使能位
TICKINT	bit1	R/W	0: 计数到 0 时,不产生异常挂起
			1: 计数到 0 时,产生异常挂起
			SYSTICK 计数器使能位
ENABLE	bit0	R/W	0: 禁止
			1: 使能

注 1: 处理器时钟为芯片内核工作时钟 HCLK, 时钟频率与系统时钟频率相同。

注 2: SYSTICK 基准时钟,实际是处理器时钟 3 分频后的时钟,频率为 FHCLK/3。

SYSTICK 重装值寄存器(SYST_RVR)

偏移地址: **14**_H

复位值: 00000000_11111111_11111111_1111111_B

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
			保	留							RELOAD	><23:16	•		
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
							RELOA	D<15:0>							

_	bit31-24	_	_
RELOAD<23:0>	bit23-0	R/W	SYSTICK 计数器重载值 计数范围 0x00_0001~0xFF_FFFF。如果为 0, SysTick 不计数。

V1.5 70/352

SYSTICK 重装值寄存器(SYST_CVR)

偏移地址: 18_H

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
			保	留						C	URREN	T <23:16	i>		
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
							CURRE	NT<15:0>	>						

_	bit31-24	_	_
			SYSTICK 计数器当前值
CURRENT<23:0>	bit23-0	R/W	读取时返回 SysTick 计数器的当前值。
			写入任何值都会将该寄存器清零,同时还会清零
			COUNTFLAG 标志位。

SYSTICK 校准值寄存器(SYST_CALIB)

偏移地址: 1C_H

复位值: 01000000_00000010_10001011_00001010_B

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
NOREF	SKEW	保留							TENMS<23:16>						
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	TENMS<15:0>														

NOREF	bit31	R	基准时钟标志位 0: 不提供外部基准时钟; 提供内部基准时钟, 其频率为 F _{HCLK} /3 1: 提供基准时钟
SKEW	bit30	R	TENMS 校准值是否准确的标志位 0: TENMS 校准值准确 1: TENMS 校准值不准确
_	bit29-24	_	_
TENMS<23:0>	bit23-0	R/W	SYSTICK 校准值 读取为 0 时,表示校准值未知

注 1: 本产品只提供内部基准时钟,其频率为 F_{HCLK} 3。

2.10 配置字软件控制

在芯片配置字的 CFG_BORV<1:0>为 11 时,可通过软件设置寄存器 SCU_SOFTCFG 来控制 BOR 电压点,电源电压低于 BORV<3:0>设定的电压时,将产生掉电复位。

系统配	系统配置软件控制寄存器(SCU_SOFTCFG)														
偏移地	偏移地址: 24_H														
复位值	: 00000	000_000	00000_0	0000000	0_00000	000 _B									
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	保留														
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
保留										BOR\	/<3:0>				

	bit31-4	_	_
BORV<3:0>	bit31-4	R/W	- BOR 电压点选择(仅在配置字 CFG_BORV=11 时有效) 0000: 1.7V 0001: 2.0V 0010: 2.1V 0011: 2.2V 0100: 2.3V 0101: 2.4V 0110: 2.5V 0111: 2.6V 1000: 2.8V 1001: 3.0V 1010: 保留 1101: 保留 1111: 保留

- 注 1: 对 SCU_SOFTCFG 寄存器进行写操作前,需要设置 SCU_PROT 寄存器,关闭写保护。
- 注 2: 因软件设置 BOR 电压点,需要芯片执行程序后才能设置,如果应用系统对芯片复位可靠性要求较高,则需避免使用 1.7V 电压点,同时推荐通过配置字 CFG_BORV 设置 BOR 电压点。

V1.5 72/352

2. 11 定时器 (T16N/T32N) 同步启动关停控制

2.11.1 概述

通过 SCU_TIMEREN 和 SCU_TIMERDIS 控制寄存器,可以选择性同时启动或关停多个 T16N/T32N 定时器。可用于对多个 TIMER 同时启动或关停,对于其它应用,仍然可使用 各个 TIMER 自身的 T16N_CON0 或 T32N_CON0 寄存器的 EN 控制位来使能或关停 TIMER。

对各 TIMER 工作的控制,SCU_TIMEREN 和 SCU_TIMERDIS 控制寄存器的优先级高于 T16N_CON0 和 T32N_CON0 寄存器的 EN 控制位,并且 SCU_TIMEREN 控制寄存器的优先级高于 SCU_TIMERDIS。

2.11.2 特殊功能寄存器

SC	U_TIM	EREN	↓使能	控制者	存器	(SCL	J_TIMEREN)									
偏和	多地址:	34 _H														
复任	立值: (0000	000	0_0	0000	000	_0000000	0_0	000	0000	Ов					
31	30	29	28	27	26	25	24	24 23 22 21 20 19 18 17 16								
										保留	7					
15	14	13	12	11	10	9	8	3 7 6 5 4 3 2 1		1	0					
			保留				T32N0EN		保	留		T16N3EN	T16N2EN	T16N1EN	T16N0EN	

_	Bit31-9	_	_
			T32N0使能位
T32N0EN	bit8	R/W	0: —
			1: 使能
_	bit7-4	_	
			T16N3使能位
T16N3EN	bit3	R/W	0: —
			1: 使能
			T16N2使能位
T16N2EN	bit2	R/W	0: —
			1: 使能
			T16N1使能位
T16N1EN	bit1	R/W	0: —
			1: 使能
			T16N0使能位
T16N0EN	bit0	R/W	0: —
			1: 使能

注 1: 对 SCU_TIMEREN 寄存器的各位写 0 无效,写 1 使能后,硬件自动清零。

注 2: 对 SCU_TIMEREN 寄存器进行写操作前,需要设置 SCU_PROT 寄存器,关闭写保护。

V1.5 73/352

14 13 12

保留

SCU_TIMERDIS 使能控制寄存器(SCU_TIMERDIS) 偏移地址: 38_H 复位值: 00000000_00000000_00000000_00000000B 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 保留 10 3 2 0

保留

T16N3DIS

T16N2DIS

T16N1DIS

T16N0DIS

_	bit31-9	_	_
			T32N0关停位
T32N0DIS	bit8	R/W	0: —
			1: 关停
_	bit7-4	_	_
			T16N3关停位
T16N3DIS	bit3	R/W	0: —
			1: 关停
			T16N2关停位
T16N2DIS	bit2	R/W	0: —
			1: 关停
			T16N1关停位
T16N1DIS	bit1	R/W	0: —
			1: 关停
			T16N0关停位
T16N0DIS	bit0	R/W	0: —
			1: 关停

注 1:对 SCU_TIMERDIS 寄存器的各位写 0 无效,写 1 关停后,硬件自动清零。

8

T32N0DIS

注 2:对 SCU_TIMERDIS 寄存器进行写操作前,需要设置 SCU_PROT 寄存器,关闭写保护。

第 3 章 存储器资源

3.1 内部存储器地址映射

芯片内部存储器包括程序存储器,数据存储器,外设寄存器和系统内核寄存器,各存储器区域的地址映射关系如下图所示,图中对系统内核寄存器区域的地址映射进行了详细描述。

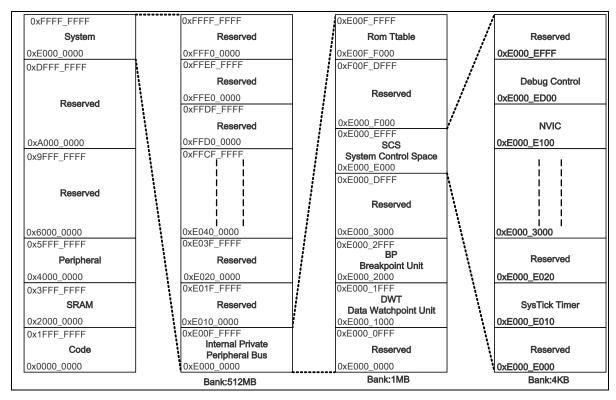


图 3-1 内部存储系统分配示意图

3.2 FLASH存储器

3. 2. 1 信息区FLASH

芯片内部的信息区 FLASH 分为两个分区: INFO0 区和 INFO1 区。

INFO0 信息区用于存储芯片配置字 CFG_WORD0, CFG_WORD1, CFG_WORD2

- 支持编程器可读写

INFO1 信息区包含 96 位芯片唯一识别码 UID

- 芯片唯一识别码 UID 出厂时已固定,无法更改,程序只读

3. 2. 1. 1 芯片配置字

芯片配置字位于 FLASH 存储器的信息区,用户可在 ISP 编程时进行设置。芯片的各种功能配置由芯片配置字和各功能相关寄存器共同设置完成。芯片配置字包括外部 XTAL 振荡器工作模式的选择、WDT 使能控制、BOR 电压选择等。

V1.5 75/352

配置字名称		CFG_WORD0
地址		00100004 _H
-	bit4-0	-
		XTAL 晶振管脚选择位
CFG_OSC_PIN	bit5	0:分布在 PB8,PB9
		1:分布在 PB10, PB11(默认)
		内部 HRC 时钟频率选择位
INTOSC_SEL	bit6	0:16MHz(默认,HRC 时钟频率为 16MHz)
		1: 其它(内部测试使用,禁止设置为1)
		上电 140ms 延时使能位
		0: 使能 (默认)
CFG_PWRTEB	bit7	1: 禁止
		仅在将 MRSTN 管脚作为外部复位(CFG_MRSTN≠00)时,
		该配置位才有效,推荐设置为使能。
		掉电复位电压选择位
		00: 3.7V
CFG BORV	bit 9-8	01: 2.5V
		10: 2.1V
		11: 1.7V(默认,可通过寄存器 SCU_SOFTCFG,进行软件
		设置掉电复位电压)
-	bit10	-
		MRSTN 管脚复用配置位
CFG_MRSTN	bit 12-11	00: GPIO 功能
		其它: MRSTN 功能 (默认)
DEDUC 0	1.1140	SWD 调试管脚选择位
DEBUG_S	bit13	0: PA14 和 PA15 端口作为调试管脚
		1: PA0 和 PA1 端口作为调试管脚(默认)
		SWD 调试模式使能位
OFO DEDUC	F:: 4E 44	Ox: 禁止(调试完毕后需禁止,避免管脚输入悬空)
CFG_DEBUG	bit 15-14	10: 使能(默认)。由 DEBUG_S 配置位所选定的 IO 管脚被
		强制作为 SWD 调试端口,用户程序对该 IO 管脚的控制无效。
		11: 禁止

- 注 1: 对配置位 CFG_PWRTEB, 仅在将 MRSTN 管脚作为外部复位(CFG_MRSTN≠00)时,该配置位才有效,推荐用户设置为上电延时使能(CFG_PWRTEB=0), 只有在应用系统特别要求芯片上电后快速进入工作状态,并且系统供电电源稳定可靠的条件下,才可考虑禁止上电延时。
- 注 2: 当 MRSTN 管脚用作外部复位管脚时,芯片内部固定集成了约 45K 欧姆的弱上拉电阻。
- 注 3: 对上电 140ms 延时,在 MRSTN 管脚复用为 GPIO 功能时,或当芯片发生 BOR 掉电复位后,该延时固定为使能,与配置位 CFG_PWRTEB 无关。
- 注 4: 在对 Flash 程序加密编程时,必须要禁止 CFG_DEBUG 位,否则加密无效;调试完毕后,也需禁止 CFG_DEBUG 位,并避免调试管脚输入悬空而产生漏电流,影响芯片抗干扰性能等隐患。
- 注 5: 如果应用系统对芯片复位可靠性要求较高,则推荐通过配置字 CFG_BORV 设置 BOR 电压点为 2.1V, 2.5V 或 3.7V, 避免设置为 1.7V 及通过软件设置 BOR 电压点。

V1.5 76/352

配置字名称		CFG_WORD1
地址		0010000C _H
-	bit 0	-
CFG_WDTEN	bit1	WDT 硬件看门狗使能位 0: 禁止(默认) 1: 使能(WDT 计数时钟源固定为内部 LRC 时钟)
WDTINTEN	bit 2	WDT 硬件看门狗中断使能位 (仅在 CFG_WDTEN=1 时有效) 0:禁止(默认) 1:使能
-	bit 4-3	-
WDTRL	bit7-5	上电复位 WDT 重载值选择位(仅在 CFG_WDTEN=1 时有效) 000: 0x0000_0200 (WDT 计数溢出时间约 16ms) 001: 0x0000_0400 (WDT 计数溢出时间约 32ms) 010: 0x0000_1000 (WDT 计数溢出时间约 128ms) 011: 0x0000_4000 (WDT 计数溢出时间约 512ms) 100: 0x0000_8000 (WDT 计数溢出时间约 1s) 101: 0x0001_0000 (WDT 计数溢出时间约 2s) 110: 0x0002_0000 (WDT 计数溢出时间约 4s) 111: 0x0004_0000 (WDT 计数溢出时间约 8s) (默认)
FWPS	bit12-8	FLASH 地址单元写保护控制位 00000: 地址单元(0000_0000 _H ~0000_07FF _H)写保护 00001: 地址单元(0000_0000 _H ~0000_0FFF _H)写保护 00010: 地址单元(0000_0000 _H ~0000_17FF _H)写保护 00011: 地址单元(0000_0000 _H ~0000_1FFF _H)写保护 10000: 地址单元(0000_0000 _H ~0000_87FF _H)写保护 1xxx1: 地址单元(0000_0000 _H ~0000_8FFF _H)写保护(默认)
FWPEB	bit13	FLASH 自编程操作(IAP)写保护区使能位 0: 使能 1: 禁止(默认)
-	bit15-14	-

- 注 1: 写保护区使能后,位于写保护区的地址单元,不支持 IAP 擦除和编程操作。
- 注 2: 在 SWD 调试模式下,需要禁止 WDT,否则在调试过程中,WDT 会始终保持工作,可能会产生计数溢出复位,导致芯片调试异常。

配置字名称		CFG_WORD2
地址		00100010 _H
-	bit7-0	-
CEC OSCMD	h:+1 F 0	XTAL 振荡器工作模式选择位
CFG_OSCMD	bit15-8	8'h2C: 高速 HS 模式(5~20MHz)(默认) 8'h48: 高速 XT 模式(1~4MHz)

V1.5 77/352

8'hF0: 低速 LP 模式 (32KHz)

3. 2. 1. 2 芯片唯一识别码

96 位芯片唯一识别码 UID 位于 FLASH 存储器的 INFO1 信息区,以 byte 为单位存放,分为 12 个 bytes,用户程序可读。UID11~UID0 各字节描述如下。

	芯片	·唯一识别码(UID11~UID0)
地址	001001D7 _H	(UID11) ~ 001001D0 _H (UID4), 001001C6 _H (UID3),
가면서L	001001С4 _н ((UID2) ~ 001001C2 _H (UID0)
UID11	Bits 95~88	芯片唯一识别码 UID11,字节单元地址 001001D7 _H
UID10	Bits 87~80	芯片唯一识别码 UID10,字节单元地址 001001D6 _H
UID9	Bits 79~72	芯片唯一识别码 UID9,字节单元地址 001001D5 _H
UID8	Bits 71~64	芯片唯一识别码 UID8,字节单元地址 001001D4 _H
UID7	Bits 63~56	芯片唯一识别码 UID7,字节单元地址 001001D3 _H
UID6	Bits 55~48	芯片唯一识别码 UID6,字节单元地址 001001D2 _H
UID5	Bits 47~40	芯片唯一识别码 UID5,字节单元地址 001001D1 _H
UID4	Bits 39~32	芯片唯一识别码 UID4,字节单元地址 001001D0 _H
UID3	Bits 31~24	芯片唯一识别码 UID3,字节单元地址 001001C6 _H
UID2	Bits 23~16	芯片唯一识别码 UID2,字节单元地址 001001C4 _H
UID1	Bits 15~8	芯片唯一识别码 UID1,字节单元地址 001001C3 _H
UID0	Bits 7~0	芯片唯一识别码 UID0,字节单元地址 001001C2 _H

3. 2. 2 程序区FLASH

芯片內部的程序存储器 FLASH 总容量为 36K 字节, 地址范围为 $0000_0000_{H}\sim0000_8FFF_{H}$, 共分 36页, 每页 1K 字节。FLASH 存储器支持至少 10 万次 擦写次数,10 年以上的数据保持时间。

芯片支持通过 IAP 模块对程序存储器 FLASH 进行编程、页擦除操作,其中字地址单元编程时间约为 20 μ s,页擦除时间约为 2ms。

芯片支持在 SWD 调试模式下对 Flash 进行编程、擦除、读取等操作,对 SWD 调试模式,需在 ISP 编程时通过配置字 CFG_DEBUG 和 DEBUG_S 使能并选择调试端口。

3.2.3 自编程操作(IAP)

芯片内部 FLASH 存储器,支持应用中自编程操作 IAP(In-Application Programming)。

写保护区使能后,位于写保护区的 FLASH 存储器地址单元,不支持 IAP 擦除和编程操作。可通过配置字 FWPEB 使能 FLASH 写保护区,通过配置字 FWPS 选择写保护区地址范围。

3. 2. 3. 1 **IAP**概述

- ◇ 支持 FLASH 数据保护,进行 IAP 操作前需先进行解锁,去除相关寄存器的写保护。
- ◇ 支持程序存储器 FLASH 全擦除模式(仅在 SWD 调试时有效)和页擦除模式。
- ◇ 支持字编程模式,每个字包含4个字节。

- ◇ IAP 操作过程中可软件禁止全局中断;也可使能中断,将中断向量表和中断服务程序 (ISR)复制到 SRAM,通过设置中断向量表重映射使能寄存器 SCU_TBLREMAPEN 和中断向量表偏移寄存器 SCU_TBLOFF 可调用 SRAM 中的中断服务程序 (ISR)来响应中断。
- ◇ IAP 操作进入擦除或编程状态后,IAP 自动上锁,进入 FLASH 保护状态,下次 IAP 操作前需重新解锁。
- ◇ IAP 自编程操作程序需放在芯片的 SRAM 中执行,并在程序中对 FLASH 擦除或编程结果进行校验。
- ◇ 芯片内置 IAP 自编程硬件固化模块,在 IAP 自编程操作程序中可以调用这些自编程 固化模块,以减少 SRAM 中的 IAP 操作代码量。

3. 2. 3. 2 IAP操作流程

- ◇ IAP 操作请求流程
 - 首先通过 IAP 控制寄存器,置位访问 FLASH 请求信号,查询得到允许应答。
 - 再进行对应的 IAP 操作, IAP 操作是指 FLASH 全擦除, 页擦除和编程三种操作。
 - 操作完成后清除 FLASH 请求信号,查询应答信号也被清零后,结束本次 FLASH 的 访问操作。
 - 具体操作流程图如下所示:

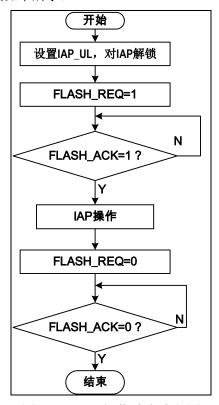


图 3-2 IAP 操作请求流程图

◇ IAP 全擦除操作流程

IAP 全擦除操作只在芯片调试模式使能时有效,即将配置字 CFG_WORD0 (0010_0004H)的 bit15 写 "1"时有效。

V1.5

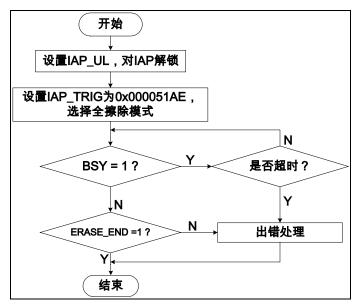


图 3-3 IAP 全擦除操作流程图

◇ IAP 页擦除操作流程

页擦除目标页可通过 IAPPA 寄存器设置。完成页擦除后,IAPPA 自动+1。

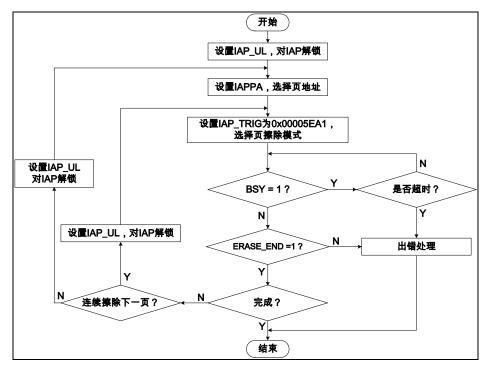


图 3-4 IAP 页擦除操作流程图

◇ IAP 编程操作流程

编程目标单元地址可通过 IAPCA 寄存器设置。完成目标单元编程后,IAPCA 自动+1,对地址连续的多字编程,无需再修改 IAPCA 寄存器;由于 IAPCA 只在当前页中进行单元寻址,跨页编程时,必须重新填写 IAPPA,如指定下一页首地址。

V1.5 80/352

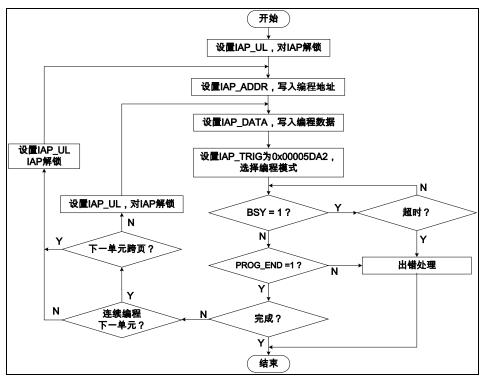


图 3-5 IAP 编程操作流程图

3. 2. 3. 3 IAP自编程硬件固化模块

芯片内置 IAP 自编程固化模块,由硬件电路实现,在 IAP 自编程操作程序中可以调用这些自编程固化模块,以减少 SRAM 中的 IAP 操作代码量。

IAP 自编程硬件固化模块支持单页擦除,单字编程和多字编程,分别由如下 IAP 操作函数来实现:

- ◇ 单页擦除函数(IAP_PageErase)
 - 入口地址:保存在 0x10000004 单元内
 - 参数输入: R0-擦除页的首地址
 - 参数输出: R0-函数执行状态(R0=1 为成功, R0=0 为失败)
- ◇ 单字编程函数(IAP_WordProgram)
 - 入口地址:保存在 0x10000008 单元内
 - 参数输入: R0-编程的 Flash 地址, R1-编程数据
 - 参数输出: R0-函数执行状态(R0=1 为成功, R0=0 为失败)
- ◇ 多字编程函数(IAP_WordsProgram)
 - 入口地址:保存在 0x10000000 单元内
 - 参数输入: R0-编程的 Flash 首地址, R1-放在 SRAM 空间的编程数据首地址, R2-编程数据长度(以字节为单位计算), R3-当编程到页首时是否先进行页 擦除(R3 非零为擦除, R3=0 为不擦除)
 - 参数输出: R0-函数执行状态(R0=1 为成功, R0=0 为失败)

单字编程函数和多字编程函数流程图可参见图 3-5 IAP 编程操作流程图。对单字编程函数忽略图中的"连续编程下一单元"判断分支。

V1.5 81/352

3.2.4 特殊功能寄存器

IAP 解锁寄存器(IAP_UL)

偏移地址: 10_H

复位值:	00000000	_00000000	_00000000	_00000000B	
------	----------	-----------	-----------	------------	--

<u> </u>															
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	UL<31:16>														
15	15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0														
	UL<15:0>														

UL<31:0>	bit31-0	R/W	IAP解锁:写入 0x0000_00A5; IAP上锁:进行如下任一操作均可上锁 写入其它值,IAP上锁; 写 IAP 触发寄存器 IAP_TRIG,IAP 自动上锁; 写保留地址,IAP上锁; IAP 软件复位后,IAP上锁。
----------	---------	-----	---

注 1: IAP 上锁后,处于写保护状态的寄存器为 IAP_CON,IAP_ADDR,IAP_DATA,IAP_TRIG。

注 2: 写保留地址,IAP 上锁,是指对 40000800_H~40000BFF_H 空间中未定义的地址单元,进行写操作时,IAP 上锁。

IAP 控制寄存器(IAP_CON)

偏移地址: 00_H

|--|

保留	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
			保	留				FLASH_FAIL		FLASH_ACK	FLASH_REQ	保	留	RST	EN

_	bit31-8	_	_
			IAP 访问 FLASH 地址失败标志位
FLASH_FAIL	bit7	R	0:IAP 未访问 FLASH 地址保护区
			1: IAP 访问 FLASH 地址保护区,访问失败
_	bit6	R/W	_
			FLASH 应答信号
FLASH_ACK	bit5	R	0: 不允许访问
			1:允许 IAP 访问 FLASH 存储器
			IAP 访问 FLASH 的请求信号
FLASH_REQ	bit4	R/W	0: 无请求
			1: IAP 请求访问 FLASH 存储器
	bit3-2	_	_
RST	bit1	W	IAP 软件复位

V1.5 82/352

			0: 读取时始终为 0 1: 复位
EN	bit0	R/W	IAP 使能位 0:禁止 1:使能

注 1: 对 IAP_CON 寄存器进行写操作前,需要先设置 IAP_UL 寄存器,对 IAP 解锁,去除写保护。

IAP 地址寄存器(IAP_ADDR)

偏移地址: 04_H

复位值: 00000000_00000000_000000000_B

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
					保留						IFREN		保	留	
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	IAPPA<5:0>								IAPC	A<7:0>				保	留

_	bit31-21	_	_			
			IAP 信息区使能			
IFREN	bit20	R/W	0:不允许 IAP 操作 FLASH_INFO 区			
			1:允许 IAP 操作 FLASH_INFO 区(不建议使能)			
_	bit19-16	_				
			IAP 页地址(擦除模式)			
IADDA <5:0>	bit1E 10	D 44/	1) 0x00~0x23: 共 36 页,对应的地址范围			
IAPPA<5:0>	bit15-10	R/W	0x0000_0000~0x0000_8FFF			
			2)操作 FLASH INFO 区时,IAPPA 无效			
			1)0x00~0x23: 共 36 页,对应的地址范围 0x0000_0000~0x0000_8FFF			
			1)擦除模式下,单元地址无效			
			2) 编程模式下:			
			操作非 FLASH INFO 区时,IAPCA 为当前页中被编程			
IAPCA<7:0>	bit9-2	R/W	单元的相对地址,每页 256 个单元,每单元 4 个字节。编			
			程前需保证该单元已经被擦除			
			 0: 不允许 IAP 操作 FLASH_INFO 区 1: 允许 IAP 操作 FLASH_INFO 区 (不建议使能) IAP 页地址 (擦除模式) 1) 0x00~0x23: 共 36 页,对应的地址范围 のx0000_0000~0x0000_8FFF 2) 操作 FLASH INFO 区时,IAPPA 无效 IAP 单元地址 1) 擦除模式下,单元地址无效 2) 编程模式下: 操作非 FLASH INFO 区时,IAPCA 为当前页中被编程单元的相对地址,每页 256 个单元,每单元 4 个字节。编程前需保证该单元已经被擦除操作 FLASH INFO 区时,仅 IAPCA[5:0]有效,INFO 			
			区共包括 64 个单元,每单元 4 个字节(不建议操作 FLASH			
			INFO ☑)			
_	bit1-0	_	_			

- 注 1: 对 IAP_ADDR 寄存器进行写操作前,需要先设置 IAP_UL 寄存器,对 IAP 解锁,去除写保护。
- 注 2: 完成页擦除后, IAPPA 自动+1;
- 注 3: 完成单元编程后,IAPCA 自动+1;由于IAPCA 只在当前页中进行单元寻址,所以跨页编程时,必须重新填写 IAPPA,指定下一页地址。
- 注 4: 在应用中,不建议通过 IAP 操作 FLASH INFO 区(即需保持 IFREN=0),以免误擦或误写 FLASH INFO 区,或改写了该区域的关键保留地址单元,产生不可预知的风险,如需操作,请与我司 FAE 部门联系!

V1.5

83/352

IAP 数据寄存器(IAP_DATA)

偏移地址: 08_H

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							DATA	<31:16>							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
							DATA	\<15:0>							

DATA<31:0>	bit31-0	R/W	IAP 单元数据
------------	---------	-----	----------

注 1: 对 IAP_DATA 寄存器进行写操作前,需要先设置 IAP_UL 寄存器,对 IAP 解锁,去除写保护。

触发寄存器(IAP_TRIG)

偏移地址: 0CH

					_										
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							TRIG<	31:16>							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
							TRIG	<15:0>							

			IAP 操作命令(写入该寄存器后,IAP 重新上锁)
			0x0000_51AE:全擦除(仅在 SWD 调试时有效)
TRIG<31:0>	bit31-0	R/W	0x0000_5EA1:页擦除(擦除 INFO 区时,必须先
TRIG<51.0>	Dito 1-0	I IN/VV	执行全擦除操作,否则无效)
			0x0000_5DA2: 编程模式
			其它:无操作(IAP 完成后,硬件自动更改为无操作)

注 1: 对 IAP_TRIG 寄存器进行写操作前,需要先设置 IAP_UL 寄存器,对 IAP 解锁,去除写保护。

IAP 状态寄存器(IAP_STA)

偏移地址: 14_H

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
										保留					
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
10			12		10	0	U	,	U	J	-	3	_		U

_	bit31-4	_	_
TIMEOUT_ERR	bit3	R/W	IAP 超时错误标志位

V1.5 84/352

			0: 写 0 清除,触发 IAP_TRIG 自动清除,			
			或 IAP 软件复位清除			
			1: IAP 操作超时,硬件自动置 1			
			IAP 编程结束标志位			
PROG END	bit2	R/W 0: 写 0 清除,触发 IAP_TRIG 自动清除,				
PROG_END	DILZ	I K/VV	或 IAP 软件复位清除			
			1: 当前单元编程完成,硬件自动置 1			
		DAM	IAP 页擦除结束标志位			
EDACE END	h:+4		0: 写 0 清除,触发 IAP_TRIG 自动清除,			
ERASE_END	bit1	R/W	或 IAP 软件复位清除			
			1: 当前页擦除完成,硬件自动置 1			
			IAP 工作状态位			
BSY	bit0	R	0: 空闲,IAP 软件复位可将该位清零			
			1: IAP 操作正在进行中			

注 1: IAP_STA 寄存器的 TIMEOUT_ERR 为 1 时,硬件自动清零 IAP_CON 寄存器的 EN 位。

3.3 数据存储器 (SRAM)

芯片内部集成 8K 字节数据存储器 SRAM, 地址范围为 2000_0000_H~2000_1FFF_H。

3.3.1 SRAM地址映射

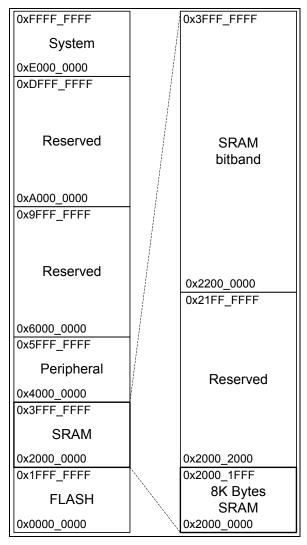


图 3-6 SRAM 映射图

3.3.2 SRAM位带扩展

SRAM 支持位带扩展,可使用普通的加载和存储指令对单比特进行读写操作。通过位带扩展,除可在起始地址为 0x2000_0000 的空间访问 SRAM 外,还可在起始地址为 0x2200 0000 的位带扩展区以单比特方式访问 SRAM。

位带扩展区把每个比特扩展为一个 32-bit 的字,通过访问该区域的字可达到访问原始比特的目的。对于 SRAM 的某个 bit,如果它所在字节地址为 A,位序号为 N(0 \leq N \leq 7),则该 bit 在 SRAM 位带扩展后的地址为:

AliasAddress_A_N = $0x2200_0000 + (A - 0x2000_0000) \times 32 + N \times 4$

3.4 外设寄存器

3.4.1 外设寄存器映射

图 3-7 外设存储器分配示意图

注: Reserved 保留寄存器区域为只读,读出值为 0000_0000H。

3.4.2 外设寄存器位带扩展

外设寄存器支持位带扩展,可使用普通的加载和存储指令对单比特进行读写操作。通过位带扩展,除可在 0x4000_0000 起始的空间访问外设外,还可在起始地址为 0x4200_0000 的位带扩展区以单比特方式访问外设寄存器。

位带扩展区把每个比特扩展为一个 32-bit 的字,通过访问这些字可达到访问原始比特的目的。对于外设寄存器的某一位,如果它所在字节地址为 A,位序号为 N ($0 \le N \le 7$),则该位

V1.5

在外设寄存器位带扩展后的地址为:

AliasAddress_A_N = $0x4200_0000 + (A - 0x4000_0000) \times 32 + N \times 4$

GPIO 端口寄存器 GPIO_PADATABSR, GPIO_PADATABCR, GPIO_PADATABRR, GPIO_PADIRBSR, GPIO_PADIRBSR, GPIO_PADIRBSR, GPIO_PBDATABSR, GPIO_PBDATABCR, GPIO_PBDATABCR, GPIO_PBDIRBSR, GPIO_PBDIRBCR, GPIO_PBDIRBRR, 用于实现对 GPIO 端口数据寄存器和方向控制寄存器的位操作,这些端口位操作寄存器不再支持位带扩展访问。除上述寄存器外,其它外设寄存器均支持位带扩展访问操作。

RTC 模块里的 RTC_WA、RTC_DA、RTC_HMS、RTC_YMDW 寄存器也不支持位带扩展访问。

3.4.3 系统控制单元(SCU)寄存器列表

系统控制单元(SCU)		
寄存器名称	寄存器偏移地址	寄存器描述
SCU 基地址: 4000_0000 _H		
SCU_PROT	0000 _H	系统设置保护寄存器
SCU_NMICON	0004 _H	不可屏蔽中断控制寄存器
SCU_PWRC	0008 _H	复位寄存器
SCU_FAULTFLAG	000C _H	硬件错误标志寄存器
SCU_FLASHWAIT	0020 _H	FLASH 访问等待时间寄存器
SCU_SOFTCFG	0024 _H	系统配置软件控制寄存器
SCU_LVDCON	0028 _H	LVD 控制寄存器
SCU_CCM	002С _Н	外部时钟检测控制寄存器
SCU_PLLLKCON	0030 _H	PLL 锁定中断控制寄存器
SCU_TIMEREN	0034 _H	TIMER 使能控制寄存器
SCU_TIMERDIS	0038 _H	TIMER 关停控制寄存器
SCU_SCLKEN0	0040 _H	系统时钟控制寄存器 0
SCU_SCLKEN1	0044 _H	系统时钟控制寄存器 1
SCU_PCLKEN	0048 _H	外设时钟控制寄存器
SCU_WAKEUPTIME	004C _H	系统唤醒时间控制寄存器
SCU_TBLREMAPEN	0060 _H	中断向量表重映射使能寄存器
SCU_TBLOFF	0064 _H	中断向量表偏移寄存器

3.4.4 GPIO寄存器列表

GPIO 寄存器列表		
寄存器名称	寄存器偏移地址	寄存器描述
GPIO 基地址: 4000_0400 _H		
GPIO_PAPORT	0000 _H	PA 端口状态寄存器
GPIO_PADATA	0004 _H	PA 端口数据寄存器
GPIO_PADATABSR	0008 _H	PA 输出置位寄存器

V1.5 88/352

GPIO 寄存器列表		
寄存器名称	寄存器偏移地址	寄存器描述
GPIO_PADATABCR	000C _H	PA 端口输出清零寄存器
GPIO_PADATABRR	0010 _H	PA 端口输出翻转寄存器
GPIO_PADIR	0014 _H	PA 端口方向控制寄存器
GPIO_PADIRBSR	0018 _H	PA 端口方向置位寄存器.
GPIO_PADIRBCR	001C _H	PA 端口方向清零寄存器
GPIO_PADIRBRR	0020 _H	PA 端口方向翻转寄存器
GPIO_PAFUNC0	0024 _H	PA[7:0]端口复用选择寄存器
GPIO_PAFUNC1	0028 _H	PA[15:8]端口复用选择寄存器
GPIO_PAFUNC2	002C _H	PA[23:16]端口复用选择寄存器
GPIO_PAFUNC3	0030 _H	PA[31:24]端口复用选择寄存器
GPIO_PAINEB	0034 _H	PA 端口输入控制寄存器
GPIO_PAODE	0038 _H	PA 端口开漏控制寄存器
GPIO_PAPUE	003C _H	PA 端口弱上拉使能寄存器
GPIO_PAPDE	0040 _H	PA 端口弱下拉使能寄存器
GPIO_PADS	0044 _H	PA 端口驱动电流控制寄存器
GPIO_PBPORT	0080 _H	PB 端口状态寄存器
GPIO_PBDATA	0084 _H	PB 端口数据寄存器
GPIO_PBDATABSR	0088 _H	PB 端口输出置位寄存器
GPIO_PBDATABCR	008C _H	PB 端口输出清零寄存器
GPIO_PBDATABRR	0090 _H	PB 端口输出翻转寄存器
GPIO_PBDIR	0094 _H	PB 端口方向控制寄存器
GPIO_PBDIRBSR	0098 _H	PB 端口方向置位寄存器
GPIO_PBDIRBCR	009C _H	PB 端口方向清零寄存器
GPIO_PBDIRBRR	00A0 _H	PB 端口方向翻转寄存器
GPIO_PBFUNC0	00A4 _H	PB[7:0]端口复用选择寄存器
GPIO_PBFUNC1	00A8 _H	PB[13:8]端口复用选择寄存器
GPIO_PBINEB	00B4 _H	PB 端口输入控制寄存器
GPIO_PBODE	00B8 _H	PB 端口开漏控制寄存器
GPIO_PBPUE	00BC _H	PB 端口弱上拉使能寄存器
GPIO_PBPDE	00C0 _H	PB 端口弱下拉使能寄存器
GPIO_PBDS	00C4 _H	PB 端口驱动电流控制寄存器
GPIO_PINTIE	0300 _H	PINT 中断使能寄存器
GPIO_PINTIF	0304 _H	PINT 中断标志寄存器
GPIO_PINTSEL	0308 _H	PINT 中断源选择寄存器
GPIO_PINTCFG	030C _H	PINT 中断配置寄存器
GPIO_KINTIE	0310 _H	KINT 中断使能寄存器
GPIO_KINTIF	0314 _H	KINT 中断标志寄存器
GPIO_KINTSEL	0318 _H	KINT 中断源选择寄存器
GPIO_KINTCFG	031C _H	KINT 中断配置寄存器
GPIO_IOINTFLTS	0330 _H	端口中断 20ns 滤波器分配控制寄存器
GPIO_TMRFLTSEL	0340 _H	TMR 输入端口 20ns 滤波器分配控制寄

GPIO 寄存器列表		
寄存器名称	寄存器偏移地址	寄存器描述
		存器
GPIO SPIFLTSEL	0344	SPI 输入端口 20ns 滤波器分配控制寄
GFIO_SFII EISEE	0344 _H	存器
GPIO_TXPWM	0380 _H	脉宽调制寄存器
GPIO_BUZC	0384 _H	蜂鸣器计数控制寄存器

3.4.5 IAP寄存器列表

IAP 寄存器列表		
寄存器名称	寄存器偏移地址	寄存器描述
IAP 基地址: 4000_0800 _H		
IAP_CON	0000 _H	IAP 控制寄存器
IAP_ADDR	0004 _H	IAP 地址寄存器
IAP_DATA	0008 _H	IAP 数据寄存器
IAP_TRIG	000C _H	IAP 触发寄存器
IAP_UL	0010 _H	IAP 解锁寄存器
IAP_STA	0014 _H	IAP 状态寄存器

3.4.6 ADC寄存器列表

ADC 寄存器列表		
寄存器名称	寄存器偏移地址	寄存器描述
ADC 基地址: 4000_1000 _H		
ADC_DR	0000 _H	ADC 转换值寄存器
ADC_CON0	0004 _H	ADC 控制寄存器 0
ADC_CON1	0008 _H	ADC 控制寄存器 1
ADC_CHS	000C _H	ADC 通道选择寄存器
ADC_IE	0010 _H	ADC 中断使能寄存器
ADC_IF	0014 _H	ADC 中断标志寄存器
ADC_ACPC	0028 _H	ADC 自动转换比较控制寄存器
ADC_ACPCMP	0030 _H	ADC 自动转换比较阈值寄存器
ADC_ACPMEAN	0034 _H	ADC 自动转换均值数据寄存器
ADC_VREFCON	0040 _H	ADC 参考控制寄存器

3.4.7 RTC寄存器列表

RTC 寄存器列表		
寄存器名称	寄存器偏移地址	寄存器描述
RTC 基地址: 4000_1400 _H		
RTC_CON	0000 _H	RTC 控制寄存器

V1.5 90/352

RTC 寄存器列表		
寄存器名称	寄存器偏移地址	寄存器描述
RTC_CAL	0004 _H	RTC 调校寄存器
RTC_WA	0008 _H	RTC 周闹钟寄存器
RTC_DA	000C _H	RTC 日闹钟寄存器
RTC_HMS	0010 _H	RTC 时分秒寄存器
RTC_YMDW	0014 _H	RTC 年月日周寄存器
RTC_IE	0018 _H	RTC 中断使能寄存器
RTC_IF	001C _H	RTC 中断标志寄存器
RTC_WP	0020 _H	RTC 写保护寄存器

3.4.8 WDT寄存器列表

WDT 寄存器列表		
寄存器名称	寄存器偏移地址	寄存器描述
WDT 基地址: 4000_1C00 _H		
WDT_LOAD	0000 _H	WDT 计数器装载值寄存器
WDT_VALUE	0004 _H	WDT 计数器当前值寄存器
WDT_CON	0008 _H	WDT 控制寄存器
WDT_INTCLR	000C _H	WDT 中断标志清除寄存器
WDT_RIS	0010 _H	WDT 中断标志寄存器
WDT_LOCK	0100 _H	WDT 访问使能寄存器
WDT_ITCR	0300 _H	WDT 测试寄存器,仅供测试使用
WDT_ITOP	0304 _H	WDT 测试寄存器,仅供测试使用

注: WDT_ITCR 和 WDT_ITOP 寄存器仅供测试使用,禁止用户对其进行写操作,否则可能会导致芯片工作异常。

3.4.9 T16N0/T16N1/T16N2/T16N3 寄存器列表

T16N 寄存器列表		
寄存器名称	寄存器偏移地址	寄存器描述
T16N0 基地址: 4000_2000 _H		
T16N1 基地址:4000_2400 _H		
T16N2 基地址: 4000_2800 _H		
T16N3 基地址: 4000_2C00 _H		
T16N_CNT0	0000 _H	T16N 计数值寄存器 0
T16N_CNT1	0004 _H	T16N 计数值寄存器 1
T16N_PRECNT	0008 _H	T16N 预分频器计数值寄存器
T16N_PREMAT	000С _н	T16N 预分频器计数匹配寄存器
T16N_CON0	0010 _H	T16N 控制寄存器 0
T16N_CON1	0014 _H	T16N 控制寄存器 1
T16N_CON2	0018 _H	T16N 控制寄存器 2
T16N_IE	0020 _H	T16N 中断使能寄存器

V1.5 91/352

T16N 寄存器列表		
寄存器名称	寄存器偏移地址	寄存器描述
T16N_IF	0024 _H	T16N 中断标志寄存器
T16N_PDZ	0028 _H	T16N 调制模式死区宽度寄存器
T16N_PTR	002C _H	T16N 调制模式 ADC 触发寄存器
T16N_MAT0	0030 _H	T16N 计数匹配寄存器 0
T16N_MAT1	0034 _H	T16N 计数匹配寄存器 1
T16N_MAT2	0038 _H	T16N 计数匹配寄存器 2
T16N_MAT3	003C _H	T16N 计数匹配寄存器 3
T16N_TOP0	0040 _H	T16NCNT0 计数峰值寄存器 0
T16N_TOP1	0044 _H	T16NCNT1 计数峰值寄存器 1

3. 4. 10 T32N0 寄存器列表

T32N 寄存器列表		
寄存器名称	寄存器偏移地址	寄存器描述
T32N0 基地址: 4000_4000 _H		
T32N_CNT	0000 _H	T32N 计数值寄存器
T32N_CON0	0004 _H	T32N 控制寄存器 0
T32N_CON1	0008 _H	T32N 控制寄存器 1
T32N_PRECNT	0010 _H	T32N 预分频器计数值寄存器
T32N_PREMAT	0014 _H	T32N 预分频器计数匹配寄存器
T32N_IE	0018 _H	T32N 中断使能寄存器
T32N_IF	001C _H	T32N 中断标志寄存器
T32N_MAT0	0020 _H	T32N 计数匹配寄存器 0
T32N_MAT1	0024 _H	T32N 计数匹配寄存器 1
T32N_MAT2	0028 _H	T32N 计数匹配寄存器 2
T32N_MAT3	002C _H	T32N 计数匹配寄存器 3

3. 4. 11 UARTO/UART1 寄存器列表

UART 寄存器列表											
寄存器名称	寄存器偏移地址	寄存器描述									
UART0 基地址: 4000_6000 _H											
UART1 基地址: 4000_6400 _H											
UART_CON0	0000 _H	UART 控制寄存器 0									
UART_CON1	0004 _H	UART 控制寄存器 1									
UART_BRR	0010 _H	UART 波特率寄存器									
UART_STA	0014 _H	UART 状态寄存器									
UART_IE	0018 _H	UART 中断使能寄存器									
UART_IF	001C _H	UART 中断标志寄存器									
UART_TBW	0020 _H	UART 发送数据写入寄存器									

V1.5 92/352

UART 寄存器列表		
寄存器名称	寄存器偏移地址	寄存器描述
UART_RBR	0024 _H	UART 接收数据读取寄存器
UART_TB0	0040 _H	UART 发送缓冲寄存器 0
UART_TB1	0044 _H	UART 发送缓冲寄存器 1
UART_TB2	0048 _H	UART 发送缓冲寄存器 2
UART_TB3	004C _H	UART 发送缓冲寄存器 3
UART_TB4	0050 _H	UART 发送缓冲寄存器 4
UART_TB5	0054 _H	UART 发送缓冲寄存器 5
UART_TB6	0058 _H	UART 发送缓冲寄存器 6
UART_TB7	005C _H	UART 发送缓冲寄存器 7
UART_RB0	0060 _H	UART 接收缓冲寄存器 0
UART_RB1	0064 _H	UART 接收缓冲寄存器 1
UART_RB2	0068 _H	UART 接收缓冲寄存器 2
UART_RB3	006С _н	UART 接收缓冲寄存器 3
UART_RB4	0070 _H	UART 接收缓冲寄存器 4
UART_RB5	0074 _H	UART 接收缓冲寄存器 5
UART_RB6	0078 _H	UART 接收缓冲寄存器 6
UART_RB7	007C _H	UART 接收缓冲寄存器 7

3. 4. 12 EUARTO 寄存器列表

EUART 寄存器列表		
寄存器名称	寄存器偏移地址	寄存器描述
EUART0 基地址: 4000_7000 _H		
EUART_CON0	0000 _H	EUART 控制寄存器 0
EUART_CON1	0004 _H	EUART 控制寄存器 1
EUART_CON2	0008 _H	EUART 控制寄存器 2
EUART_BRR	0010 _H	EUART 波特率寄存器
EUART_IE	0018 _H	EUART 中断使能寄存器
EUART_IF	001C _H	EUART 中断标志寄存器
EUART_TBW	0020 _H	EUART 发送数据写入寄存器
EUART_RBR	0024 _H	EUART 接收数据读取寄存器
EUART_TB01	0040 _H	EUART 发送缓冲寄存器 0/1
EUART_TB23	0044 _H	EUART 发送缓冲寄存器 2/3
EUART_RB01	0048 _H	EUART 接收缓冲寄存器 0/1
EUART_RB23	004C _H	EUART 接收缓冲寄存器 2/3

3. 4. 13 SPI0/ SPI1 寄存器列表

SPI 寄存器列表		
寄存器名称	寄存器偏移地址	寄存器描述
SPI0 基地址: 4000_8000 _H		
SPI1 基地址: 4000_8400 _H		
SPI_CON	0000 _H	SPI 控制寄存器
SPI_TBW	0008 _H	SPI 发送数据写入寄存器
SPI_RBR	000C _H	SPI 接收数据读取寄存器
SPI_IE	0010 _H	SPI中断使能寄存器
SPI_IF	0014 _H	SPI中断标志寄存器
SPI_TB	0018 _H	SPI 发送缓冲寄存器
SPI_RB	001C _H	SPI 接收缓冲寄存器
SPI_STA	0020 _H	SPI 状态寄存器
SPI_CKS	0024 _H	SPI 波特率设置寄存器

3. 4. 14 I2C0 寄存器列表

I2C 寄存器列表					
寄存器名称	寄存器偏移地址	寄存器描述			
I2C0 基地址: 4000_9000 _H					
I2C_CON	0000 _H	I2C 控制寄存器			
I2C_MOD	0004 _H	I2C 工作模式寄存器			
I2C_IE	0008 _H	I2C 中断使能寄存器			
I2C_IF	000C _H	I2C 中断标志寄存器			
I2C_TBW	0010 _H	I2C 发送数据写入寄存器			
I2C_RBR	0014 _H	I2C 接收数据读取寄存器			
I2C_TB	0018 _H	I2C 发送缓冲寄存器			
I2C_RB	001C _H	I2C 接收缓冲寄存器			
I2C_STA	0020 _H	I2C 状态寄存器			

3.5 内核寄存器

3.5.1 系统定时器 (SYSTICK) 寄存器列表

系统定时器(SYSTICK)										
寄存器名称	寄存器偏移地址	寄存器描述								
SYSTICK 基地址: E000_E000 _H										
SYST_CSR	0010 _H	SYSTICK 控制/状态寄存器								
SYST_RVR	0014 _H	SYSTICK 重装值寄存器								
SYST_CVR	0018 _H	SYSTICK 当前值寄存器								
SYST_CALIB	001C _H	SYSTICK 校准值寄存器								

V1.5 94/352

3.5.2 中断控制器(NVIC)寄存器列表

中断控制器(NVIC)		
寄存器名称	寄存器偏移地址	寄存器描述
NVIC 基地址: E000_E100 _H		
NVIC_ISER	0000 _H	IRQ0~31 置中断请求使能寄存器
NVIC_ICER	0080 _H	IRQ0~31 清中断请求使能寄存器
NVIC_ISPR	0100 _H	IRQ0~31 置中断挂起寄存器
NVIC_ICPR	0180 _H	IRQ0~31 清中断挂起寄存器
NVIC_PR0	0300 _H	IRQ0~3 优先级控制寄存器
NVIC_PR1	0304 _H	IRQ4~7 优先级控制寄存器
NVIC_PR2	0308 _H	IRQ8~11 优先级控制寄存器
NVIC_PR3	030C _H	IRQ12~15 优先级控制寄存器
NVIC_PR4	0310 _H	IRQ16~19 优先级控制寄存器
NVIC_PR5	0314 _H	IRQ20~23 优先级控制寄存器
NVIC_PR6	0318 _H	IRQ24~27 优先级控制寄存器
NVIC_PR7	031C _H	IRQ28~31 优先级控制寄存器

3.5.3 系统控制块(SCB)寄存器列表

系统控制块(SCB)										
寄存器名称	寄存器偏移地址	寄存器描述								
SCB 基地址: E000_ED00 _H										
SCB_CPUID	0000 _H	SCB_CPUID 寄存器								
SCB_ICSR	0004 _H	中断控制和状态寄存器								
SCB_AIRCR	000C _H	应用中断和复位控制寄存器								
SCB_SCR	0010 _H	系统控制寄存器								
SCB_CCR	0014 _H	配置和控制寄存器								
SCB_SHPR2	001C _H	系统处理程序优先级寄存器 2								
SCB_SHPR3	0020 _H	系统处理程序优先级寄存器 3								

第 4 章 输入输出端口(GPIO)

4.1 概述

本芯片支持两组 GPIO 端口,最多支持共 46 个 I/O 管脚,其中可用端口 41 个,外部可用端口 35 个。

所有 I/O 端口都是 CMOS 施密特输入和 CMOS 输出驱动(可配置为开漏输出),每个 I/O 端口的复用功能和工作模式由端口复用选择寄存器 GPIO PAFUNC/GPIO PBFUNC 配置。

当 I/O 端口配置为通用数字 I/O 功能时,其输出状态由端口方向控制寄存器 GPIO_PADIR/GPIO_PBDIR 配置,输入状态由相应的端口输入控制寄存器 GPIO_PAINEB/ GPIO_PBINEB 配置。当 I/O 端口处于输出状态时,其电平由端口数据寄存器 GPIO_PADATA/ GPIO_PBDATA 决定,1 为高电平,0 为低电平;当 I/O 端口处于输入状态时,其电平状态可通过读取端口状态寄存器 GPIO_PAPORT/GPIO_PBPORT 获得。

端口输出电平支持位操作。将 GPIO 输出置位寄存器 GPIO_PADATABSR/GPIO_PBDATABSR 相应位写 1,可将相应位的 GPIO 端口设置为高电平;将 GPIO 端口输出清零寄存器 GPIO_PADATABCR / GPIO_PBDATABCR 相应位写 1,可将相应位的 GPIO端口设置为低电平;将 GPIO 端口输出翻转寄存器 GPIO_PADATABRR/GPIO_PBDATABRR相应位写 1,可将相应位的 GPIO端口电平取反。

端口方向控制支持位操作。将 GPIO 端口方向置位寄存器 GPIO_PADIRBSR/GPIO_PBDIRBSR 相应位写 1,可将相应位的 GPIO 端口设置为输入;将 GPIO 端口方向清零寄存器 GPIO_PADIRBCR/GPIO_PBDIRBCR 相应位写 1,可将相应位的 GPIO 端口设置为输出;将 GPIO 端口方向翻转寄存器 GPIO_PADIRBRR/GPIO_PBDIRBRR 相应位写 1,可将相应位的 GPIO 端口方向取反。

当 I/O 端口配置为复用功能时,作为芯片外设功能模块的复用端口,其输出状态仍需通过端口方向控制寄存器 GPIO_PADIR/GPIO_PBDIR 进行配置,输入状态仍需通过相应的端口输入控制能寄存器 GPIO PAINEB/GPIO PBINEB 进行配置。

每个 I/O 端口均支持开漏输出,由相应的端口开漏控制寄存器 GPIO_PAODE/ GPIO_PBODE 控制开漏输出是否使能。

每个 I/O 端口均支持弱上拉或弱下拉,由相应的端口弱上拉使能寄存器 GPIO_PAPUE/GPIO_PBPUE 控制其弱上拉功能是否使能,由相应的端口弱下拉使能寄存器 GPIO_PAPDE/GPIO_PBPDE 控制其弱下拉功能是否使能。需注意不可同时使能弱上拉和弱下拉功能。

每个 I/O 端口均支持电流驱动能力可配置,由相应的端口驱动电流控制寄存器 GPIO_PADS/GPIO_PBDS 选择 I/O 端口的输出驱动能力,可选择为强电流驱动 I/O 端口,或者普通驱动 I/O端口。

GPIO 端口的特殊功能寄存器需通过 APB 总线访问,通过软件方式操作 I/O 端口输出脉冲信号时,能够得到的最快脉冲频率为外设时钟 PCLK 频率的 22 分频。

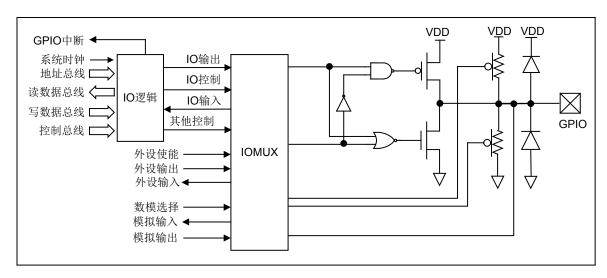


图 4-1 IO 端口电路结构图

4.2 外部端口中断

支持全部 IO 口外部端口中断,分成 8 组,每组对应一个 IRQ,并可通过 GPIO_PINTCFG 寄存器的 PINT7CFG~PINT0CFG 位配置各外部中断触发方式。触发方式配置为高电平或低电平时,中断标志只有在触发电平翻转后,才可通过对 GPIO_PINTIF 寄存器的相应位写 1 来清除。

GPIO_PINTIE 寄存器的输入屏蔽使能位 PMASK,可对外部端口中断输入进行屏蔽,屏蔽位使能时,对应的中断输入源就被屏蔽了,不会产生中断和标志位。

GPIO_PINTIE 寄存器的外部端口中断使能位 PINTIE,可对每个外部端口中断标志 PINTIF 是否触发外部端口中断请求,进行配置。

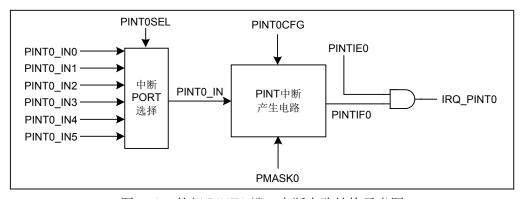


图 4-2 外部 PINTO 端口中断电路结构示意图

PB7

PA31

PINT	SEL0	SEL1	SEL2	SLE3	SEL4	SEL5
PINT0	PA0	PA8	PA16	PA24	PB0	PB8
PINT1	PA1	PA9	PA17	PA25	PB1	PB9
PINT2	PA2	PA10	PA18	PA26	PB2	PB10
PINT3	PA3	PA11	PA19	PA27	PB3	PB11
PINT4	PA4	PA12	PA20	PA28	PB4	PB12
PINT5	PA5	PA13	PA21	PA29	PB5	PB13
PINT6	PA6	PA14	PA22	PA30	PB6	-

PINT0~PINT7 的外部中断源如下表所示:

PA7

PA23 PINT 选择对应列表

注: 如果内联管脚 PA9 设置为中断功能,则 PINT1 相关的其它管脚不要使能中断。

PA15

4.3 外部按键中断

PINT7

支持 1 个 8 输入外部按键中断(KINT), 8 个按键输入为 KINTO ~KINT7, 其中任意一个按键 输入都可以触发按键中断,每个按键输入可以从6个 I/O 端口中选择一个作为其输入源。

每个输入屏蔽使能位 KMASK,可对相应的输入源 KINT 进行屏蔽。屏蔽使能时,不论 KINT IN 输入如何变化,中断标志 KINTIF 均保持不变;屏蔽使能时,可通过端口中断配置寄存器 GPIO_KINTCFG,对各个按键输入 KINT 进行配置,选择中断的有效触发边沿或电平。

每个按键中断使能位 KINTIE,可对相应的按键标志 KINTIF 是否触发按键中断请求,进行配 置。

GPIO KINTCFG 寄存器的按键中断配置位 KINT7CFG~KINT0CFG, 可对每个输入源的触发 方式进行配置,根据端口电平变化的不同状态,触发中断。切换输入源触发方式时,需先屏 蔽输入源,避免误产生中断;或先禁止按键中断,并在切换完成后,对中断标志进行清零, 然后再使能按键中断。

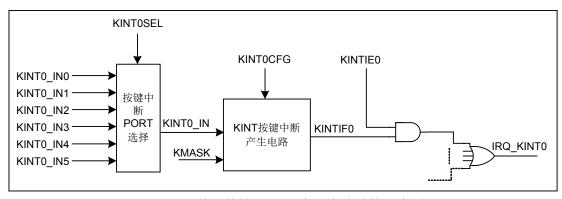


图 4-3 外部按键 KINTO 中断电路结构示意图

上图以外部中断 KINTO 电路结构示意图为例,可见其有 6 个可选外部中断源,分别来自 PAO、 PA8、PA16、PA24、PB0 和 PB8。KINT0 ~KINT7 的外部中断源如下表所示:

KINT	SEL0	SEL1	SEL2	SLE3	SEL4	SEL5
KINT0	PA0	PA8	PA16	PA24	PB0	PB8
KINT1	PA1	PA9	PA17	PA25	PB1	PB9
KINT2	PA2	PA10	PA18	PA26	PB2	PB10
KINT3	PA3	PA11	PA19	PA27	PB3	PB11
KINT4	PA4	PA12	PA20	PA28	PB4	PB12
KINT5	PA5	PA13	PA21	PA29	PB5	PB13
KINT6	PA6	PA14	PA22	PA30	PB6	-
KINT7	PA7	PA15	PA23	PA31	PB7	-

表 4-2 KINT 选择对应列表

4. 4 Buzz输出

Buzz 输出可用于驱动蜂鸣器等音频发声器件。

GPIO BUZC 控制寄存器用于使能 Buzz 和设定其输出信号的频率。Buzz 信号频率为:

$$F_{BUZ} = \frac{Fpclk}{2 \times (BUZ_LOAD + 1)}$$

由 GPIO_PAFUNC0 和 GPIO_PBFUNC1 寄存器来设定 Buzz 信号直接输出至 PA0、PA1 或PB13。

Buzz 的固定频率输出信号还可被 UARTO 的输出信号 TXDO 调制为 TXPWMO 信号或被 EUARTO 的输出信号 E0TXO 调制为 TXPWM1 信号,并送至相应输出端口上。可通过 TX0PLV 和 TX1PLV 控制位设定为高电平调制还是低电平调制。

当 GPIO_TXPWM 寄存器的 TX0PS 控制位为 2'b11 时, TXPWM0 调制信号可输出至 TXD0、T16N0OUT0、T16N0OUT1 或 BUZ 管脚(由 GPIO_TXPWM 寄存器的 TX0_S3~TX0_S0 选取)。当 GPIO_TXPWM 寄存器的 TX1PS 控制位为 2'b11 时, TXPWM1 调制信号可输出至 E0TX0、T16N1OUT0、T16N1OUT1 或 BUZ 管脚(由 GPIO_TXPWM 寄存器的 TX1_S3~TX1_S1 选取)。

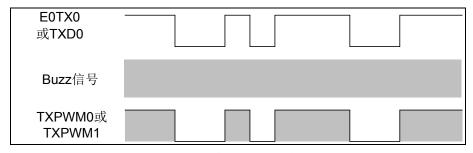


图 4-4 Buzz 高电平调制输出波形图

V1.5 99/352

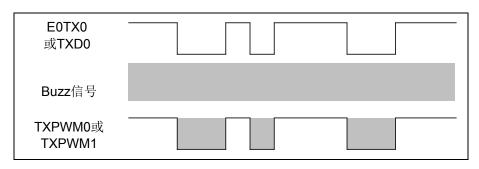


图 4-5 Buzz 低电平调制输出波形图

4.5 特殊功能寄存器

PA 端口	口状态寄	存器(G	PIO_PAF	PORT)											
偏移地	址: 00 _H														
复位值	: XXXXX	xx_xxxx	xxxx_xx	(XXXXX _	xxxxxx	В									
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							PORT<	:31:16>							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
							PORT	<15:0>							
					PA 端口输入/输出电平										
PORT<31:0>		t	bit 31-0 R		R	0: 低电平									
							1: 高电平								

PA 端口	J数据寄	存器(GI	PIO_PAE	DATA)											
偏移地	址: 04 _H														
复位值	: 00000	000_000	00000_0	0000000	0_00000	000 _B									
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							DATA<	:31:16>							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
							DATA	<15:0>							

			PA 端口输出寄存器
DATA<31:0>	bit 31-0	R/W	0: 输出低电平
			1:输出高电平

V1.5

PA 输b	出置位寄	存器(GPI	O_PA	DATABSR)										
偏移地	址: 08 _H													
复位值	: XXXXXX	xxxxxxx	xx_xx	xxxxxx _xxx	XXXXB									
31	30	29	28	27	26 25	24	23	22	21	20	19	18	17	16
						DATABS	R<31:16	>						
15	14	13	12	11	10 9	8	7	6	5	4	3	2	1	0
						DATABS	SR<15:0>	•						
						PA ‡	俞出置	位选择	Ĕ					
DAT	ABSR	<31:0>		bit 31-0 W			下改变:	输出电	平					
						1: 相应端口输出高电平								

扁移地:	址: 0C	Н													
夏位值:	: XXXXX	xxx_xxxx	xxxx_xx	(XXXXX_	(XXXXXXX	В									
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	1
						С	ATABCE	R <31:16	>						
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	(

			PA 输出清零选择
DATABCR<31:0>	bit 31-0	W	0: 不改变输出电平
			1: 相应端口输出低电平

PA 端口输出翻转寄存器(GPIO_PADATABRR) 偏移地址: 10_H DATABRR <31:16> DATABRR <15:0>

			PA 输出翻转选择
DATABRR<31:0>	bit 31-0	W	0: 不改变输出电平
			1: 相应端口输出翻转

V1.5 101/352

复位值:	111111	11_11111	111_111	11111_11	111111	1 _B									
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	1
							DIR <3	31:16>							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	(
							DIR <	15:0>							
							PA 端	日方	向控制	位					
							0: 辅								
						DAM	1. ∄	上输出	(若(SPIO	PAINE	B 对应	5位为	0,则	可
	ID 404		1 1 2	10 04	\sim 1		1. 7		\ \ \ \ \	-· ··~_					
DI	IR<31	<0:1	bi	it0 31-	0	R/W				_					
DI	IR<31	l:0>	bi	it0 31-	0	R/W	为数	字输入	入端口	使用。	。若需	詩使能	模拟追	通道功	能
DI	IR<31	1:0>	bi	it0 31-	0	R/W	为数 GPIC	字输 <i>)</i> D_PAII	入端口 NEB ⁵	ー 使用。 和 GP	。若需 IO_PA	言使能 DIR 的		通道功	能
DI	IR<31	l:0>	bi	it0 31-	0	R/W	为数 GPIC	字输 <i>)</i> D_PAII	入端口 NEB ⁵	ー 使用。 和 GP	。若需	言使能 DIR 的	模拟追	通道功	能
DI	IR<31	1:0>	bi	it0 31-	0	R/W	为数 GPIC	字输 <i>)</i> D_PAII	入端口 NEB ⁵	ー 使用。 和 GP	。若需 IO_PA	言使能 DIR 的	模拟追	通道功	能
						R/W	为数 GPIC	字输 <i>)</i> D_PAII	入端口 NEB ⁵	ー 使用。 和 GP	。若需 IO_PA	言使能 DIR 的	模拟追	通道功	能
?A 端口	1方向置	位寄存器				R/W	为数 GPIC	字输 <i>)</i> D_PAII	入端口 NEB ⁵	ー 使用。 和 GP	。若需 IO_PA	言使能 DIR 的	模拟追	通道功	能
°A 端口扁移地均	1方向置	位寄存器	(GPIO_	_PADIRE	3SR)		为数 GPIC	字输 <i>)</i> D_PAII	入端口 NEB ⁵	ー 使用。 和 GP	。若需 IO_PA	言使能 DIR 的	模拟追	通道功	能
°A 端口扁移地均	1方向置	位寄存器	(GPIO_	_PADIRE	3SR)		为数 GPIC	字输 <i>)</i> D_PAII	入端口 NEB ⁵	ー 使用。 和 GP	。若需 IO_PA	言使能 DIR 的	模拟追	通道功	能
°A 端口扁移地均	1方向置	位寄存器	(GPIO_	_PADIRE	3SR)	XX _B	为数 GPIC	字输 <i>)</i> D_PAII	入端口 NEB ⁵	ー 使用。 和 GP	。若需 IO_PA	言使能 DIR 的	模拟追	通道功	能 设
°A 端口 扁移地均 夏位值:	1方向置 址: 18 _i : xxxxxx	位寄存器 Ⅎ ※XX_XXXXX	(GPIO_	_PADIRE	SSR)	XX _B	为数 GPIC 为 1,	字输力 D_PAII 关闭	入端口 NEB ⁵ 数字轴	· 使用 和 GP 介入和华	。若需 IO_PA 输出功	e DIR 的 能)	模拟追	通道 功 位都应	能 设
°A 端口 扁移地均 夏位值:	1方向置 址: 18 _i : xxxxxx	位寄存器 Ⅎ ※XX_XXXXX	(GPIO_	_PADIRE	SSR)	XX _B	为数 GPIC 为 1, 24	字输力 D_PAII 关闭	入端口 NEB ⁵ 数字轴	· 使用 和 GP 介入和华	。若需 IO_PA 输出功	e DIR 的 能)	模拟追	通道 功 位都应	能过设
?A 端口 扁移地均 复位值: 31	1方向置 址: 18 : xxxxxx 30	位寄存器 	(GPIO_ XXX_XXX 28	_PADIRE	SSR)	хх _в 25	为数 GPIC 为 1, 24 DIRBSR·	字输力 D_PAII 关闭 23 <31:16> 7	入端口 NEB ⁵ 数字轴	使用 和 GP 	。若需 IO_PA 輸出功 20	持使能 .DIR 自 能)	模拟追 约对应 ² 18	通道功 位都应 17	能

PA 端口方向清零寄存器	(GPIO_PADIRBCR)
--------------	-----------------

偏移地址: 1C_H

复位值:	XXXXXXXX	_xxxxxxxx	_xxxxxxxx	$_{\mathtt{XXXXXXXX}_{\mathtt{B}}}$
------	----------	-----------	-----------	-------------------------------------

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							DIRBCR	R<31:16>							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
							DIRBCI	R<15:0>							

			PA 端口方向清零选择
DIRBCR<31:0>	bit 31-0	W	0:不改变 GPIO_PADIR 的值
			1:对应的 GPIO_PADIR 位设置为 0

V1.5 102/352

PA 端口方向翻转寄存器(GPIO_PADIRBRR)

偏移地址: 20日

/佣/移地/	业: ZU _F	1													
复位值:	: XXXXXX	xx_xxxx	xxxx_xxx	xxxxx_>	(XXXXXXX _I	В									
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							DIRBRE	R<31:16>							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
							DIRBRI	R<15:0>							

			PA 端口方向翻转选择
DIRBRR<31:0>	bit 31-0	W	0:不改变 GPIO_PADIR 的值
			1:对应的 GPIO_PADIR 位值翻转

PA[7:0]端口复用选择寄存器(GPIO_PAFUNC0)

偏移地址: 24_H

复位值: 00000000_00000000_00000000_000000000B

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
f	呆留	PA7<1:0>		係	保留		<1:0>	保	:留	PA5	PA5<1:0>		保留		<1:0>
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
ſ	呆留	PA3<1:0> 保留		留	PA2	<1:0>	保留		PA1<1:0>		保	:留	PA0	<1:0>	

_	bit31-30	_	_
			PA7 复用选择位
			00: FUN0
PA7<1:0>	bit29-28	R/W	01: FUN1
			10: FUN2
			11: FUN3
_	bit27-26	_	_
PA6<1:0>	bit25-24	R/W	PA6 复用选择位
PA0<1.0>	DI(25-24	IT/VV	00~11: FUN0~FUN3
_	bit23-22	_	_
DA 5 < 1 · 0 >	h:t01 00	R/W	PA5 复用选择位
PA5<1:0>	bit21-20	R/VV	00~11: FUN0~FUN3
_	bit19-18	_	_
DA 4 - 4 - 0 >	h::17.10	DAM	PA4 复用选择位
PA4<1:0>	bit17-16	R/W	00~11: FUN0~FUN3
_	bit15-14	_	_
DA2<1:0>	hit12 10	DAM	PA3 复用选择位
PA3<1:0>	bit13-12	R/W	00~11: FUN0~FUN3
_	bit11-10	_	_

V1.5

PA2<1:0>	bit9-8	R/W	PA2 复用选择位 00~11: FUN0~FUN3
_	bit7-6	_	_
PA1<1:0>	bit5-4	R/W	PA1 复用选择位 00~11: FUN0~FUN3
_	bit3-2	_	_
PA0<1:0>	bit1-0	R/W	PA0 复用选择位 00~11: FUN0~FUN3

PA[15:8]端口复用选择寄存器(GPIO_PAFUNC1)

偏移地址: 28_H

复位值: 00000000_00000000_00000000_000000000B

31 3	0	29	28	27	26	25	24	23	22	21	20	19	18	17	16
保留		PA15<1:0>		保留		PA14	PA14<1:0>		保留		PA13<1:0>		保留		<1:0>
15 1	4	13	12	11	10	9	8	7	6	5	4	3	2	1	0
保留	保留 PA11<1:0>		保留		PA10<1:0>		保留		PA9<1:0>		保	:留	PA8<	<1:0>	

			I
	bit31-30		_
			PA15 复用选择位
			00: FUN0
PA15<1:0>	bit29-28	R/W	01: FUN1
			10: FUN2
			11: FUN3
_	bit27-26	_	_
D144 4 0	1.105.04	5.44	PA14 复用选择位
PA14<1:0>	bit25-24	R/W	00~11: FUN0~FUN3
_	bit23-22	_	_
			PA13 复用选择位
PA13<1:0>	bit21-20	R/W	00~11: FUN0~FUN3
_	bit19-18	_	_
DA40 :4 0:	L'147.40	D 44/	PA12 复用选择位
PA12<1:0>	bit17-16	R/W	00~11: FUN0~FUN3
_	bit15-14	_	_
DA44 :4 0:	b340.40	D 44/	PA11 复用选择位
PA11<1:0>	bit13-12	R/W	00~11: FUN0~FUN3
_	bit11-10	_	_
D140 4 0	1.10.0	5.44	PA10 复用选择位
PA10<1:0>	bit9-8	R/W	00~11: FUN0~FUN3
_	bit7-6	_	_
D10 .4.0	1.75.4	5.44	PA9 复用选择位
PA9<1:0>	bit5-4	R/W	00~11: FUN0~FUN3
			OU TI: I DINO I DINO

V1.5

_	bit3-2		_
PA8<1:0>	bit1-0	R/W	PA8 复用选择位 00~11: FUN0~FUN3

PA[23:16]端口复用选择寄存器(GPIO_PAFUNC2)

偏移地址: 2C_H

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
保	R留 PA23<1:0>		<1:0>	保留		PA22<1:0>		保留		PA21<1:0>		保留		PA20<1:0>	
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
保	保留 PA19<1:0>		保	保留		PA18<1:0>		保留		PA17<1:0>		保留		<1:0>	

	1	
bit31-30	_	_
		PA23 复用选择位
		00: FUN0
bit29-28	R/W	01: FUN1
		10: FUN2
		11: FUN3
bit27-26	_	_
F:40E 04	DAA	PA22 复用选择位
DIT25-24	R/VV	00~11: FUN0~FUN3
bit23-22	_	_
L'104 00	D.44/	PA21 复用选择位
DIT21-20	R/VV	00~11: FUN0~FUN3
bit19-18	_	_
h::47.40	D///	PA20 复用选择位
DI[17-16	R/VV	00~11: FUN0~FUN3
bit15-14	_	_
F140.40	D.44/	PA19 复用选择位
DIT13-12	R/VV	00~11: FUN0~FUN3
bit11-10	_	_
1.10.0	544	PA18 复用选择位
bit9-8	R/W	00~11: FUN0~FUN3
bit7-6	_	_
1.77	D.44	PA17 复用选择位
bit5-4	R/W	00~11: FUN0~FUN3
bit3-2	_	_
1 114 0	544	PA16 复用选择位
bit1-0	R/W	00~11: FUN0~FUN3
	bit27-26 bit25-24 bit23-22 bit21-20 bit19-18 bit17-16 bit15-14 bit13-12 bit11-10 bit9-8 bit7-6 bit5-4	bit29-28 R/W bit27-26 — bit25-24 R/W bit23-22 — bit19-18 — bit17-16 R/W bit15-14 — bit13-12 R/W bit11-10 — bit9-8 R/W bit7-6 — bit5-4 R/W bit3-2 —

PA[31:24]端口复用选择寄存器(GPIO_PAFUNC3)

偏移地址: 30_H

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
保	:留	PA31	<1:0>	保	:留	PA30	<1:0>	保	:留	PA29	<1:0>	保	:留	PA28	<1:0>
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
保	保留 PA27<1:0> 保留		留	PA26	<1:0>	保留		PA25<1:0>		保留		PA24	<1:0>		

_	bit31-30	_	_
			PA31 复用选择位
			00: FUN0
PA31<1:0>	bit29-28	R/W	01: FUN1
			10: FUN2
			11: FUN3
_	bit27-26	_	_
DA 20 < 1:0 >	h:t0E 04	DAA	PA30 复用选择位
PA30<1:0>	bit25-24	R/W	00~11: FUN0~FUN3
_	bit23-22	_	_
DA 20 < 1.0 >	hit01 00	DAA	PA29 复用选择位
PA29<1:0>	bit21-20	R/W	00~11: FUN0~FUN3
_	bit19-18	_	_
DA 20 < 1.0 >	hit17.16	DAA	PA28 复用选择位
PA28<1:0>	bit17-16	R/W	00~11: FUN0~FUN3
_	bit15-14	_	_
DA 27 < 1 · 0 >	hit12 12	R/W	PA27 复用选择位
PA27<1:0>	bit13-12	R/VV	00~11: FUN0~FUN3
_	bit11-10	_	_
DA 20 44.05	h:t0 0	D///	PA26 复用选择位
PA26<1:0>	bit9-8	R/W	00~11: FUN0~FUN3
_	bit7-6	_	_
DA 25 < 1,0 >	bitE 4	DAA	PA25 复用选择位
PA25<1:0>	bit5-4	R/W	00~11: FUN0~FUN3
_	bit3-2	_	_
DA 24 - 1 : 0 >	hit1 O	DAA/	PA24 复用选择位
PA24<1:0>	bit1-0	R/W	00~11: FUN0~FUN3

注 1: PA2/PA3/PA27/PA26 中只能有一个可配置为 PWM 输出的刹车控制信号,优级为: PA2>PA3>PA27>PA26,例如一旦 PA3 设置为 PWM 输出刹车控制信号,则 PA27 和 PA26 不可再配置为 PWM 输出刹车控制信号。

注2: GPIO_PAFUNC 寄存器仅用于端口的数字输入输出功能选择。使用端口的模拟功能时,需要设置 GPIO_PADIR 和 GPIO_PAINEB 寄存器的对应位为 1,关闭端口的数字输入和输出功能。

DV 端口	1給 λ 按	制寄存器	GPIO	DAINER											
		则可什 价	GFIO_	PAINED											
	址: 34 _H														
复位值	: 00000	000_000	00000_	00000000)_0000	00000 _B									
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							INEB<	31:16>							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
							INEB	<15:0>							
							端口	数字轴	俞入功能	能使能	位				
IN	IEB<3	1:0>		bit31-0)	R/W	0: 1	吏能							
							1: 禁	禁止							
			•				•								
PA 端口	7开漏控	制寄存器	GPIO_	PAODE											
偏移地	址: 38 _H														
复位值	: 00000	000 000	00000	00000000	0000	00000 _B									
31							24	22	22	24	20	10	10	47	16
31	30	29	28	27	26	25	24 ODE<	23 31:16>	22	21	20	19	18	17	16
15	14	13	12	11	10	9	8	7 <15:0>	6	5	4	3	2	1	0
							ODE	15:0>							
								A.A 1. =		. I. I.					
									干漏使的						
0	DE<3	1:0>		bit31-0)	R/W			端口为						
							1: 1	吏能,	端口为	开漏轴					
PA 端口	习弱上拉 ⁄	使能寄存	器(GP	IO_PAPL	IE)										
偏移地	址:3C _H														
复位值	: 00000	000_000	00000_	00000000	0000	00000 _B									
21	20	20	20	27	26	25	24	23	22	21	20	19	18	17	16

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	PUE <31:16>														
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
							PUE <	<15:0>							

			端口弱上拉使能位
PUE<31:0>	bit31-0	R/W	0: 禁止
			1: 使能

V1.5 107/352

PA 端口弱下拉使能寄存器(GPIO_PAPDE)
偏移地址: 40 _H
复位值: 00000000_00000000_000000000B

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							PDE <	31:16>							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
							PDE <	<15:0>							

			端口弱下拉使能位
PDE<31:0>	bit31-0	R/W	0: 禁止
			1: 使能

PA 端口驱动电流控制寄存器(GPIO_PADS)

偏移地址: 44H

复位值: 00000000_00000000_000000000B

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							DS <	31:16>							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
							DS <	15:0>							

			端口输出驱动能力选择位
DS<31:0>	bit31-0	R/W	0: 普通电流驱动
			1: 强电流驱动

PB 端口状态寄存器(GPIO_PBPORT)

偏移地址: 80_H

保留

复位	复位值: 00000000_00000000_00xxxxxx_xxxxxxxxxB														
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	保留														
15	5 14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

PORT<13:0>

_	bit31-14	_	-
			PB 端口输入/输出电平
PORT<13:0>	bit13-0	R	0: 低电平 1. 高电平
			1: 高电平

V1.5

PB 端[PB 端口数据寄存器(GPIO_PBDATA)																
偏移地	址: 84 н																
复位值	: 00000	000_000	000000_0	000000	0_0000	0000 _B											
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16		
							保	留									
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0		
保	留							DATA<13:0>									
	_		b	it31-1	4	_	_										
							PB 3	喘口输	出电平	£							
D/	ATA<1	3:0>	ı	bit13-0)	R/W		俞出低									
							1: \$	俞出高	电平								

扁移地	址: 88 _H														
夏位值:	: XXXXX	xx_xxxx	xxxx_xx	(XXXXX _)	xxxxxxx	В									
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							保	:留							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
保	留							DATABS	R<13:0>						

_	bit31-14	_	_
			PB 输出置位选择
DATABSR<13:0>	bit13-0	W	0: 不改变输出电平
			1: 相应端口输出高电平

偏移地	址:8C _H														
复位值:	: XXXXX	(XX_XXXX	xxxx_xxx	(XXXXX_	(XXXXXXX	В									
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							保	:留							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
15 保		13	12	11	10	9		7 DATABO			4	3	2		1

_	bit31-14	_	_
			PB 输出清零选择
DATABCR<13:0>	bit13-0	W	0: 不改变输出电平
			1: 相应端口输出低电平

V1.5 109/352

PB 端口输出翻转寄存器(C	GPIO_PBDATABRR)
----------------	-----------------

偏移地址: 90_H

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							保	留							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
保	留							DATABR	R<13:0>						

_	bit31-14	_	_
DATABRR<13:0>	bit13-0	W	PB 输出翻转选择 0: 不改变输出电平 1: 相应端口输出翻转

PB 端口方向控制寄存器(GPIO_PBDIR)

偏移地址: 94_H

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							保	:留							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
保	留							DID-	13:0>						

_	bit31-14	_	_
			PB 端口方向控制位
			0: 输出
DID <12:0>	h:+12 0	DAA	1:输入(若 GPIO_PBINEB 对应位为 0,则可作为
DIR<13:0>	bit13-0	R/W	数字输入端口使用。若需使能模拟通道功能,
			GPIO_PBINEB 和 GPIO_PBDIR 的对应位都应设置
			为 1, 关闭数字输入和输出功能)

PB 端口方向置位寄存器(GPIO_PBDIRBSR)

偏移地址: 98_H

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							保	:留							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
保	:留							DIRBSF	R<13:0>						

_	bit31-14	_	_
			PB 端口方向置位选择
DIRBSR<13:0>	bit13-0	W	0:不改变 GPIO_PBDIR 的值
			1:对应的 GPIO_PBDIR 位设置为 1

V1.5 110/352

PB 端口方向清零寄存器	(GPIO	PRDIRBCR)	
10加日月月日1日安日午日	(OI IO		

偏移地址: 9CH

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							保	留							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
保	留							DIRBCE	R<13:0>						

_	bit31-14	_	_
			PB 端口方向清零选择
DIRBCR<13:0>	bit13-0	W	0:不改变 GPIO_PBDIR 的值
			1:对应的 GPIO_PBDIR 位设置为 0

PB 端口方向翻转寄存器(GPIO_PBDIRBRR)

偏移地址: AO_H

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							保	留							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

_	bit31-14	_	_
			PB 端口方向翻转选择
DIRBRR<13:0>	bit13-0	W	0:不改变 GPIO_PBDIR 的值
			1:对应的 GPIO_PBDIR 位值翻转

PB[7:0]端口复用选择寄存器(GPIO_PBFUNC0)

偏移地址:A4_H

复位值: 00000000_00000000_00000000_00000000B

3	1	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	保旨	H	PB7	<1:0>	保	:留	PB6	<1:0>	保	:留	PB5	<1:0>	保	留	PB4<	<1:0>
1	5	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	保旨	留	PB3	<1:0>	保	留	PB2	<1:0>	保	:留	PB <	:1:0>	保	留	PB0<	<1:0>

_	bit31-30	_	_
			PB7 复用选择位 00: FUN0
PB7<1:0>	bit29-28	R/W	01: FUN1
			10: FUN2
			11: FUN3

V1.5 111/352

_	bit27-26	_	_
PB6<1:0>	bit25-24	R/W	PB6 复用选择位
FB0\1.0>	DI(23-24	INVV	00~11: FUN0~FUN3
_	bit23-22	_	_
PB5<1:0>	bit21-20	R/W	PB5 复用选择位
1 00<1.02	DILZ 1-20	IVVV	00~11: FUN0~FUN3
_	bit19-18		_
PB4<1:0>	bit17-16	R/W	PB4 复用选择位
1 04 \ 1.0 >	51(17-10	IVVV	00~11: FUN0~FUN3
_	bit15-14		_
PB3<1:0>	bit13-12	R/W	PB3 复用选择位
1 00 1.02	DIC13-12	TOVV	00~11: FUN0~FUN3
_	bit11-10		_
PB2<1:0>	bit9-8	R/W	PB2 复用选择位
1 02 1.02	5113-0	TOVV	00~11: FUN0~FUN3
_	bit7-6	_	-
PB1<1:0>	bit5-4	R/W	PB1 复用选择位
1 51 11.05	5110 4	1377	00~11: FUN0~FUN3
_	bit3-2		_
PB0<1:0>	bit1-0	R/W	PB0 复用选择位
1 00 11.05	DICT 0	1000	00~11: FUN0~FUN3

PB[15:8]端口复用选择寄存器(GPIO_PBFUNC1)

偏移地址: A8_H

复位值: 00000000_00000000_00000000_00000000_B

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
				保	留					PB13	<1:0>	保	留	PB12	<1:0>
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	保留	PB11	<1:0>	保	留	PB10	<1:0>	保	:留	PB9	<1:0>	保	留	PB8	<1:0>

_	bit31-22	_	_
PB13<1:0>	bit21-20	R/W	PB13 复用选择位 00: FUN0 01: FUN1
			10: FUN2 11: FUN3
_	bit19-18	_	_
PB12<1:0>	bit17-16	R/W	PB12 复用选择位 00~11: FUN0~FUN3
_	bit15-14	_	_
PB11<1:0>	bit13-12	R/W	PB11 复用选择位 00~11: FUN0~FUN3

V1.5 112/352

_	bit11-10	_	_
PB10<1:0>	bit9-8	R/W	PB10 复用选择位
1 010 < 1.02	Dit9-0	17/77	00~11: FUN0~FUN3
_	bit7-6	_	_
PB9<1:0>	bit5-4	R/W	PB9 复用选择位
PD9~1.02	DII:3-4	I INVV	00~11: FUN0~FUN3
_	bit3-2	_	_
PB8<1:0>	bit1-0	R/W	PB8 复用选择位
PD0<1.0>	DIL 1-0	FK/VV	00~11: FUN0~FUN3

注: GPIO_PBFUNC 仅用于端口的数字输入输出功能选择。使用 PB 端口的模拟功能时,需要设置 GPIO_PBDIR 和 GPIO_PBINEB 寄存器的对应位为 1,关闭端口的数字输入和输出功能。

PB 端口输入控制寄存器	GPIO_PBINEB
--------------	-------------

偏移地址: B4_H

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							保	留							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

_	bit31-14	_	_
INEB<13:0>	bit13-0	R/W	端口数字输入功能使能位 0: 使能 1: 禁止

PB 端口开漏控制寄存器(GPIO_PBODE)

偏移地址: B8_H

复位值: 00000000_00000000_00000000_00000000_B

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
			保留												
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
保	留		· -		. •			ODE<	:13:0>						

_	bit31-14	_	_
			端口输出开漏使能位
ODE<13:0>	bit13-0	R/W	0: 禁止,端口为推挽输出
			1: 使能,端口为开漏输出

PB 端口弱上拉使能寄存器(GPIO_PBPUE)

偏移地址: BC_H

复位值: 00000000_00000000_00000000_000000000B

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
			保留												
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
保	留							PUEN:	<13:0>						

_	bit31-14	_	_
PUEN<13:0>	bit13-0	R/W	端口弱上拉使能位 0: 禁止 1: 使能

注: 当 MRSTN 管脚用作外部复位管脚时,芯片内部固定集成了约 45K 欧姆的弱上拉电阻,不受端口弱上拉使能寄存器的控制。

PB 端口弱下拉使能寄存器(GPIO_PBPDE)

偏移地址: CO_H

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							保	:留							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	留														

_	bit31-14	_	_
PDEN<13:0>	bit13-0	R/W	端口弱下拉使能位 0: 禁止 1: 使能

PB 端口驱动电流控制寄存器(GPIO_PBDS)

偏移地址: C4_H

复位值: 00000000_00000000_000000000B

31	30	29	28	27	26	25	24	23	22	21	20	19	18	1/	16
							保	留							
							P1-	ш							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
侈	マイ イン	DS<13:0>													

_	bit31-14	_	_
DS<13:0>	bit13-0	R/W	端口输出驱动能力选择位 0:普通电流驱动

	1: 强	电流驱动

PINT 中断使能寄存器(GPIO_PINTIE)

偏移地址: 00_H

					_										
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							保	留							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
			PMASI	K<7:0>							PINTIE	E<7:0>			

_	bit31-16	_	_
			PINT 中断源屏蔽控制位
PMASK<7:0>	bit15-8	R/W	0: 不屏蔽
			1: 屏蔽
			PINT 使能位
PINTIE<7:0>	bit7-0	R/W	0: 禁止
			1: 使能

PINT 中断标志寄存器(GPIO_PINTIF)

偏移地址: **04**_H

复位值: 00000000_00000000_00000000_000000000B

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							保	:留							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
			保	:留							PINTI	- <7:0>			

_	bit 31-8	_	_
			GPIO 外部中断标志位
DINITIE 47.05	h:47 0	D///	0: 无中断
PINTIF<7:0>	bit7-0	R/W	1: 有中断
			软件写 1 清除中断标志位,写 0 无效

注:对 GPIO_PINTIF 寄存器中的各中断标志位,写 0 无效,写 1 才能清除标志位;读操作时,读取的值为 1 表示有中断发生。

V1.5 115/352

PINT0~7 中断源选择寄存器(GPIO_PINTSEL)

偏移地址: 08_H

复位值: 00000000_00000000_00000000_000000000B

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
保留	PIN	T7SEL<	2:0>	保留	PIN	PINT6SEL<2:0>			PINT5SEL<2:0>			保留	PINT4SEL<2:0>		
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
保留	PIN	T3SEL<	2:0>	保留	PIN	PINT2SEL<2:0>		保留	PINT1SEL<2:0>		保留	PINT0SEL<2:0>		2:0>	

_	bit31		
	DILOT		PINT7 输入选择位
DINITZOEL 20:05	h:t20 20	R/W	700~101: SEL0~SEL5
PINT7SEL<2:0>	bit30-28	H/VV	
	1		其余: SEL0
_	bit27	_	_
			PINT6 输入选择位
PINT6SEL<2:0>	bit26-24	R/W	000~101: SEL0~SEL5
			其余: SEL0
_	bit23	_	_
			PINT5 输入选择位
PINT5SEL<2:0>	bit22-20	R/W	000~101: SEL0~SEL5
			其余: SEL0
_	bit19	_	_
			PINT4 输入选择位
PINT4SEL<2:0>	bit18-16	R/W	000~101: SEL0~SEL5
			其余: SEL0
_	bit15	_	_
			PINT3 输入选择位
PINT3SEL<2:0>	bit14-12	R/W	000~101: SEL0~SEL5
			其余: SEL0
_	bit11	_	_
			PINT2 输入选择位
PINT2SEL<2:0>	bit10-8	R/W	000~101: SEL0~SEL5
			其余: SEL0
_	bit7	_	-
			PINT1 输入选择位
PINT1SEL<2:0>	bit6-4	R/W	000~101: SEL0~SEL5
			其余: SEL0
_	bit3	_	_
	2.10		PINTO 输入选择位
PINT0SEL<2:0>	bit2-0	R/W	000~101: SEL0~SEL5
I IIVI UOLL \Z.U	DILZ-U	17/77	其余: SEL0
			丹水: OELU

PINT 中断配置寄存器(GPIO_PINTCFG)

偏移地址: 0C_H

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
保留	PIN ⁻	T7CFG<	2:0>	保留	PIN	T6CFG<	2:0>	保留	PIN	T5CFG<	2:0>	保留	PIN ⁻	T4CFG<	2:0>
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
保留	PIN	T3CFG<	2:0>	保留	PINT2CFG<2:0>			保留	PIN	T1CFG<	2:0>	保留	PIN	T0CFG<	2:0>

_	bit31	_	_
PINT7CFG<2:0>	bit30-28	R/W	PINT7 配置位
1 11/17/01 0 \2.02	DI(30-20	17/77	参见 GPIO_PINTCFG 详情
_	bit27	_	_
PINT6CFG<2:0>	bit26-24	R/W	PINT6 配置位
FINTOCI G\2.0>	01120-24	IX/VV	参见 GPIO_PINTCFG 详情
_	bit23	_	_
PINT5CFG<2:0>	bit22-20	R/W	PINT5 配置位
FINTSCFG~2.0>	DI(22-20	FX/VV	参见 GPIO_PINTCFG 详情
_	bit19	_	_
PINT4CFG<2:0>	bit18-16	R/W	PINT4 配置位
PINT4CFG<2.0>	DIL 10-10	I IK/VV	参见 GPIO_PINTCFG 详情
_	bit15	_	_
PINT3CFG<2:0>	bit14-12	R/W	PINT3 配置位
PINTOCPG\2.0>	DIL14-12	FX/VV	参见 GPIO_PINTCFG 详情
_	bit11	_	_
PINT2CFG<2:0>	bit10-8	R/W	PINT2 配置位
PINT2CFG\2.0>	DIL 10-6	FX/VV	参见 GPIO_PINTCFG 详情
_	bit7		
PINT1CFG<2:0>	bit6-4	R/W	PINT1 配置位
FINT ICEGN2.07	DIIO-4	FX/ V V	参见 GPIO_PINTCFG 详情
_	bit3	_	_
PINT0CFG<2:0>	bit2-0	R/W	PINT0 配置位
FINTUCEG\2.U>	DILZ-U	FX/VV	参见 GPIO_PINTCFG 详情

寄存器名称	GPIO_PINTCFG 详情							
			GPIO_PINTCFG 配置位					
			000: 上升沿触发中断					
DINITOEO (2).05	P:1 0 0	DAA/	001: 下降沿触发中断					
PINTCFG<2:0>	bit 2-0	R/W	010: 高电平触发中断					
			011: 低电平触发中断					
			1xx: 上升沿和下降沿均触发中断					

KINT 中断使能寄存器(GPIO_KINTIE)

偏移地址: 10_H

复位值: 00000000_00000000_11111111_00000000B

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							保	:留							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
			KMAS	K<7:0>							KINTIE	E<7:0>			

_	bit31-16		_
			KIN 按键输入屏蔽控制位
KMASK<7:0>	bit15-8	R/W	0: 不屏蔽
			1: 屏蔽
			KINT 中断使能位
KINTIE<7:0>	bit7-0	R/W	0: 禁止
			1: 使能

KINT 中断标志寄存器(GPIO_KINTIF)

偏移地址: 14H

复位值: 00000000_00000000_00000000_00000000_B

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							保	留							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

_	bit 31-8		_
KINTIF<7:0>	bit7-0	R/W	GPIO 按键中断标志位0: 无中断1: 有中断软件写 1 清除中断标志位,写 0 无效

注:对 GPIO_KINTIF 寄存器中的各中断标志位,写 0 无效,写 1 才能清除标志位;读操作时,读取的值为 1 表示有中断发生。

KINT0~7 中断源选择寄存器(GPIO_KINTSEL)

偏移地址: 18_H

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
保留	KIN	T7SEL<	2:0>	保留	KIN ⁻	KINT6SEL<2:0>			KIN	T5SEL<	2:0>	保留	KIN	T4SEL<	2:0>
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
保留	KINT3SEL<2:0> 保留			保留	KIN ⁻	T2SEL<	2:0>	保留	KIN	T1SEL<	2:0>	保留	KIN	T0SEL<	2:0>

_	bit31	_	_
			KINT7 输入选择位
KINT7SEL<2:0>	bit30-28	R/W	000~101: SEL0~SEL5
			其余: SEL0
_	bit27	_	_
			KINT6 输入选择位
KINT6SEL<2:0>	bit26-24	R/W	000~101: SEL0~SEL5
			其余: SEL0
_	bit23	_	_
			KINT5 输入选择位
KINT5SEL<2:0>	bit22-20	R/W	000~101: SEL0~SEL5
			其余: SEL0
_	bit19	_	_
			KINT4 输入选择位
KINT4SEL<2:0>	bit18-16	R/W	000~101: SEL0~SEL5
			其余: SEL0
_	bit15	_	
			KINT3 输入选择位
KINT3SEL<2:0>	bit14-12	R/W	000~101: SEL0~SEL5
			其余: SEL0
_	bit11	_	_
			KINT2 输入选择位
KINT2SEL<2:0>	bit10-8	R/W	000~101: SEL0~SEL5
			其余: SEL0
_	bit7	_	_
			KINT1 输入选择位
KINT1SEL<2:0>	bit6-4	R/W	000~101: SEL0~SEL5
			其余: SEL0
_	bit3	_	_
			KINTO 输入选择位
KINT0SEL<2:0>	bit2-0	R/W	000~101: SEL0~SEL5
			其余: SEL0

KINT 中断配置寄存器(GPIO_KINTCFG)

偏移地址: 1C_H

复位值: 00000000_00000000_00000000_00000000B

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
保留	KIN	Γ7CFG<	2:0>	保留	KIN	KINT6CFG<2:0>			KINT5CFG<2:0>			保留	KIN	T4CFG<	:2:0>
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
保留	KINT3CFG<2:0> 保留			KINT2CFG<2:0>			保留	KIN	T1CFG<	2:0>	保留	KIN	T0CFG<	:2:0>	

_	bit31	_	_
KINT7CFG<2:0>	bit30-28	R/W	KINT7 配置位
101701042.05	51100 20	17///	参见 GPIO_KINTCFG 详情
_	bit27	_	_
KINT6CFG<2:0>	bit26-24	R/W	KINT6 配置位
KINTOCI G\2.0>	DI(20-24	IX/VV	参见 GPIO_KINTCFG 详情
_	bit23	_	_
KINT5CFG<2:0>	bit22-20	R/W	KINT5 配置位
KINTSCFG~2.0>	DILZZ-20	IT./VV	参见 GPIO_KINTCFG 详情
_	bit19	_	_
KINT4CFG<2:0>	bit18-16	R/W	KINT4 配置位
KINT4CFG<2.02	DIL 10-10	I IK/VV	参见 GPIO_KINTCFG 详情
_	bit15	_	_
KINT3CFG<2:0>	bit14-12	R/W	KINT3 配置位
KINTSCFG<2.02	DIL14-12	FC/VV	参见 GPIO_KINTCFG 详情
_	bit11	_	_
KINT2CFG<2:0>	bit10-8	R/W	KINT2 配置位
KINTZUFG~Z.U>	DIL 10-6	IT./VV	参见 GPIO_KINTCFG 详情
_	bit7	_	_
KINT1CFG<2:0>	bit6-4	R/W	KINT1 配置位
KINTICEGS2.02	DIIO-4	FK/VV	参见 GPIO_KINTCFG 详情
	bit3	_	_
KINT0CFG<2:0>	hi+2 0	R/W	KINT0 配置位
KINTUCEG<2.U>	bit2-0	FX/VV	参见 GPIO_KINTCFG 详情

寄存器名称			GPIO_KINTCFG 详情
			GPIO_KINTCFG 配置位
			000: 上升沿触发中断
CDIO KINITOTO	hit 2 0	DAA/	001: 下降沿触发中断
GPIO_KINTCFG	bit 2-0	R/W	010: 高电平触发中断
			011: 低电平触发中断
			1xx: 上升沿和下降沿均触发中断

偏移地:	址: 30 _H														
复位值	: 00000	000_000	00000_0	0000000	0_0000	000 _B									
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							保	:留							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
保留											FLT_S	S<7:0>			

V1.5 120/352

bit31-8

			端口中断 20ns 滤波器分配控制位
FLT_S<7:0>	bit7-0	R/W	0:用于 PINT 中断信号源的滤波
			1: 用于 KINT 中断信号源的滤波

TMR 输入端口 20ns 滤波器分配控制寄存器(GPIO_TMRFLTSEL)

偏移地址: 40_H

复位值: 00000000_00000000_000000000B

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							保	岩留							

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	FLT3_SI	EL<3:0>			FLT2_SI	EL<3:0>			FLT1_S	EL<3:0>			FLT0_S	EL<3:0>	

_	bit31-16	_	_
FLT3_SEL<3:0>	bit15-12	R/W	TMR FLT3 滤波器控制位 4'h0: T16N0_0 使用 TMR_FLT3 4'h1: T16N0_1 使用 TMR_FLT3 4'h2: T16N1_0 使用 TMR_FLT3 4'h3: T16N1_1 使用 TMR_FLT3 4'h4: T16N2_0 使用 TMR_FLT3 4'h5: T16N2_1 使用 TMR_FLT3 4'h6: T16N3_0 使用 TMR_FLT3 4'h7: T16N3_1 使用 TMR_FLT3 4'h8: T32N0_0 使用 TMR_FLT3 4'h9: T32N0_1 使用 TMR_FLT3 其它: 预留
FLT2_SEL<3:0>	bit11-8	R/W	TMR FLT2 滤波器控制位 4'h0: T16N0_0 使用 TMR_FLT2 4'h1: T16N0_1 使用 TMR_FLT2 4'h2: T16N1_0 使用 TMR_FLT2 4'h3: T16N1_1 使用 TMR_FLT2 4'h4: T16N2_0 使用 TMR_FLT2 4'h5: T16N2_1 使用 TMR_FLT2 4'h6: T16N3_0 使用 TMR_FLT2 4'h7: T16N3_1 使用 TMR_FLT2 4'h7: T32N0_0 使用 TMR_FLT2 4'h9: T32N0_1 使用 TMR_FLT2 其它: 预留
FLT1_SEL<3:0>	bit7-4	R/W	TMR FLT1 滤波器控制位 4'h0: T16N0_0 使用 TMR_FLT1 4'h1: T16N0_1 使用 TMR_FLT1 4'h2: T16N1_0 使用 TMR_FLT1 4'h3: T16N1_1 使用 TMR_FLT1

			4'h4: T16N2_0 使用 TMR_FLT1
			4'h5: T16N2_1 使用 TMR_FLT1
			4'h6: T16N3_0 使用 TMR_FLT1
			4'h7: T16N3_1 使用 TMR_FLT1
			4'h8: T32N0_0 使用 TMR_FLT1
			4'h9: T32N0_1 使用 TMR_FLT1
			其它: 预留
			TMR FLT0 滤波器控制位
			4'h0: T16N0_0 使用 TMR_FLT0
			4'h1: T16N0_1 使用 TMR_FLT0
			4'h2: T16N1_0 使用 TMR_FLT0
			4'h3: T16N1_1 使用 TMR_FLT0
ELTO OEL 40:05	F:10 0	D 44/	4'h4: T16N2_0 使用 TMR_FLT0
FLT0_SEL<3:0>	bit3-0	R/W	4'h5: T16N2_1 使用 TMR_FLT0
			4'h6: T16N3_0 使用 TMR_FLT0
			4'h7: T16N3_1 使用 TMR_FLT0
			4'h8: T32N0_0 使用 TMR_FLT0
			其它: 预留
			其它: 预留

SPI 输入端口 20ns 滤波器分配控制寄存器(GPIO_SPIFLTSEL)

偏移地址: 44_H

复位值: 00000000_00000000_00000000_00000000_B

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	保留														
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	保留												FLT_SE	EL<3:0>	

_	bit31-4	_	
			SPI FLT 滤波器控制位
FLT_SEL<3:0>	bit3-0	R/W	1: SPI1 使用该滤波器
			0: SPI0 使用该滤波器

脉宽调制寄存器(GPIO_TXPWM)

偏移地址: 80_H

复位值: 00000000_00000000_000000000_B

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
								1	保留						

15	14	13	12	11	10	9 8	3 7	6	5	4	3	2	1	0
TX1	TX1	TX1	TX1	保	TX1	TX1PS	< TX0	TX0	TX0	TX0_	保留	TX0PL	_	X0PS<1:0>
_S3	_S2	_S1	_S0	留	PLV	1:0>	_S3	_S2	_S1	S0	水田	V	·	X01 3 \ 1.0 z

_	bit31-16	_	T —
	Dito 1 10		TXPWM1 调制输出使能端(仅在 TX0 S3=0 时,即
			未使能 TXPWM0 调制输出至 BUZ 管脚时有效)
TX1_S3	bit15	R/W	0: BUZ 管脚正常输出
			1: BUZ 管脚为 TXPWM1 输出
			TXPWM1 调制输出使能端
TX1_S2	bit14	R/W	0: T16N1OUT1 管脚正常输出
17(1_02		1000	1: T16N1OUT1 管脚为 TXPWM1 输出
			TXPWM1 调制输出使能端
TX1_S1	bit13	R/W	0: T16N1OUT0 管脚正常输出
			1: T16N1OUT0 管脚为 TXPWM1 输出
			TXPWM1 调制输出使能端
TX1_S0	bit12	R/W	0: E0TX0 管脚正常输出
			1: E0TX0 管脚为 TXPWM1 输出
_	bit11	_	_
			TXPWM1 调制电平选择位
			0: 低电平调制 (E0TX0 与 TX1PS 所选取的脉冲信
TX1PLV	bit10	R/W	号进行硬件或操作)
			1: 高电平调制 (E0TX0 与 TX1PS 所选取的脉冲信
			号进行硬件与操作)
			TXPWM1 调制 PWM 脉冲选择位
			00: 调制禁止
TX1PS<1:0>	bit9-8	R/W	01: 与 T16N1OUT0 进行调制
			10: 与 T16N1OUT1 进行调制
			11: 与 BUZ 进行调制
			TXPWM0 调制输出使能端
TX0_S3	bit7	R/W	0: BUZ 管脚正常输出
			1: BUZ 管脚为 TXPWM0 输出
			TXPWM0 调制输出使能端
TX0_S2	bit6	R/W	0: T16N0OUT1 管脚正常输出
			1: T16N0OUT1 管脚为 TXPWM0 输出
			TXPWM0 调制输出使能端
TX0_S1	bit5	R/W	0: T16N0OUT0 管脚正常输出
			1: T16N0OUT0 管脚为 TXPWM0 输出
			TXPWM0 调制输出使能端
TX0_S0	bit4	R/W	0: TXD0 管脚正常输出
		<u> </u>	1: TXD0 管脚为 TXPWM0 输出
	bit3		_
			TXPWM0 调制电平选择位
			0: 低电平调制(TXD0 与 TX0PS 所选取的脉冲信号
TX0PLV	bit2	R/W	进行硬件或操作)
			1: 高电平调制(TXD0 与 TX0PS 所选取的脉冲信号
			进行硬件与操作)

			TXPWM0 调制 PWM 脉冲选择位
			00: 调制禁止
TX0PS<1:0>	bit1-0	R/W	01: 与 T16N0OUT0 进行调制
			10: 与 T16N0OUT1 进行调制
			11: 与 BUZ 进行调制

BUZ 控制寄存器(GPIO_BUZC)

偏移地址: 84_H

00000000_00000000_00000000 _B

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	保	留			BUZ_LOAD<19:8>										
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	BUZ_LOAD<7:0>										保留				BUZEN

_	bit31-28	_	_
BUZ_LOAD<19:0>	bit27-8	R/W	BUZ 计数装载值寄存器 BUZ 信号频率的计算公式为: $F_{BUZ} = \frac{Fpclk}{2 \times (BUZ_LOAD+1)}$
_	bit7-1	_	_
BUZEN	bit0	R/W	BUZ 使能位 0:禁止 1:使能

第5章外设

5.1 定时器/计数器

5. 1. 1 16 位定时器/计数器T16N

以 T16N0 为例,T16N1/T16N2/T16N3 同 T16N0。

5.1.1.1 概述

- ◆ 1个8位可配置预分频器,分频时钟作为T16N_CNT0/1的定时/计数时钟
 - ◇ 预分频时钟源可选: PCLK 或 T16N0CK0/T16N0CK1
 - ◇ 预分频计数器可由 T16N_PRECNT 寄存器设定计数初值
 - ◇ 分频比由寄存器 T16N_PREMAT 设定
- ◆ 2 个 16 位可配置定时/计数寄存器 T16N_CNT0/T16N_CNT1
 - ◇ T16N CNT1 仅在独立调制工作模式下可用
- ◆ 2 个 16 位峰值寄存器 T16N_TOP0/T16N_TOP1
 - ◇ T16N_TOP1 仅在独立调制工作模式下可用
 - ◇ T16N_CNT0/T16N_CNT1 计数值达到峰值时被清零
 - ◇ 在调制工作模式下,若使能 ADC 触发功能,T16N_CNT0/T16N_CNT1 计数值达到 峰值时可分别产生 ADC 转换触发信号
- ◆ 支持定时/计数工作模式
 - ◇ 支持 4 组 16 位计数匹配寄存器 T16N_MAT0/T16N_MAT1/T16N_MAT2/ T16N_MAT3, 计数匹配后支持下列操作:
 - 产生中断
 - 支持 T16N_CNT0 计数寄存器三种操作:保持,清零或继续计数(在独立调制工作模式下也支持 T16N CNT1 计数寄存器的上述三种操作)
 - 支持 T16N0OUT0 端口四种操作:保持,清零,置 1 或取反(在独立调制工作模式下也支持 T16N0OUT1 端口的上述四种操作,在同步和互补调制工作模式下支持 T16N0OUT1 端口输出与 T16N0OUT0 端口相同和互补的 PWM 波形)
- ◆ 支持输入捕捉工作模式
 - ◇ 捕捉边沿可配置
 - ◇ 捕捉次数可配置
- ◆ 支持调制工作模式
 - ◇ 通过对匹配寄存器进行配置,同时设置匹配后端口输出特性,可得到相应的 PWM 输出
 - ◇ 支持调制过程触发 ADC 转换
 - T16N_MAT0、T16N_MAT1、T16N_MAT2、T16N_MAT3 与 T16N_CNT0 计数值 匹配并产生中断时触发
 - T16N TOP0与T16N CNT0计数值匹配触发
 - T16N_TOP1 与 T16N_CNT1 计数值匹配触发

- ◇ 两路 PWM 可配置为独立/同步/互补三种模式
 - 独立模式, T16N0OUT0/T16N0OUT1 输出不同的 PWM 波形
- 同步模式, T16N0OUT0/T16N0OUT1 输出相同 PWM 波形
- 互补模式, T16N0OUT0/T16N0OUT1 输出互补 PWM 波形, 互补模式下死区时间 宽度可配置
- ◇ 支持刹车控制
 - 可通过 GPIO_PAFUNC 寄存器来选取 PA2(T16N_BK0), PA3(T16N_BK1), PA26 (T16N_BK2) 或 PA27 (T16N_BK3), 其中任意一个作为外部刹车信号, 有效刹车极性可配置
 - 刹车输出电平可配置

5. 1. 1. 2 结构框图

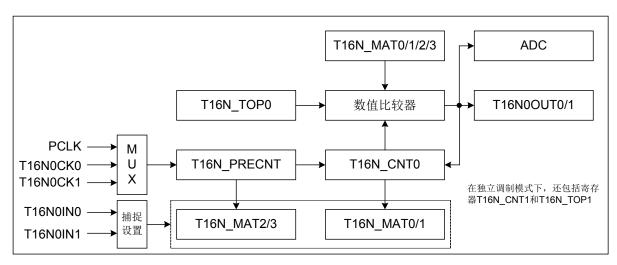


图 5-1 T16N0 电路结构框图

5. 1. 1. 3 **T16N**定时/计数功能

设置 T16N_CON0 寄存器的 MOD<1:0>=00 或 01,使 T16N 工作在定时/计数模式。在 定时/计数模式下 T16N CNT1 和 T16N TOP1 不可使用。

设置 T16N_CON0 寄存器的 EN=1,使能 T16N,计数值寄存器 T16N_CNT0 从预设值 开始累加计数。

设置 T16N_CON0 寄存器的 CS,选择计数时钟源。时钟源为内部时钟 PCLK 时,为定时模式,时钟源为外部时钟 T16N0CK0/T16N0CK1 端口输入时,为计数模式。

设置 T16N_CON0 寄存器的 SYNC,选择外部时钟 T16N0CK0/T16N0CK1 是否被内部时钟 PCLK 同步。当选择外部时钟被同步时,为同步计数模式,否则为异步计数模式。同步计数模式时,T16N0CK0/T16N0CK1 端口输入的高/低电平脉宽均必须大于 2 个PCLK 时钟周期。

设置 T16N_CON0 寄存器的 EDGE,选择外部时钟计数方式:上升沿计数,下降沿计数,或上升/下降沿均计数,其中上升/下降沿均计数只适用于同步计数模式。

设置 T16N_CON0 寄存器的 MAT0S/MAT1S/MAT2S/MAT3S<1:0>,选择计数匹配后 T16N_CNT0 计数值寄存器的工作状态。

MAT0S/MAT1S/MAT2S/MAT3S<1:0>=00: 当 16N_CNT0 计数值匹配 T16N_MAT0/T16N_MAT1/T16N_MAT2/T16N_MAT3 时,继续累加计数,不产生中断,当计数到 0xFFFF 后,下一次累加计数溢出,16N_CNT0 的值为 0x0000,并产生中断,重新开始累加计数。

MAT0S/MAT1S/MAT2S/MAT3S<1:0>=01: 当 16N_CNT0 计数值匹配 T16N_MAT0/T16N_MAT1/T16N_MAT2/T16N_MAT3 时, 计数值将保持, 即在下一个计数时钟(经过预分频之后的时钟)到来时, T16N_CNT0 不再累加计数, 只产生中断。

MAT0S/MAT1S/MAT2S/MAT3S<1:0>=10: 当 T16N_CNT0 计数值匹配 T16N_MAT0/ T16N_MAT1/T16N_MAT2/T16N_MAT3 时, 计数值在下一个计数时钟(经过预分频之后的时钟)到来时被清零,并产生中断,重新开始累加计数。

MAT0S/MAT1S/MAT2S/MAT3S<1:0>=11: 当 T16N_CNT 计数值匹配 T16N_MAT0/T16N_MAT1/T16N_MAT2/T16N_MAT3 时,继续累加计数,并在下一个计数时钟(经过预分频之后的时钟)到来时,产生中断,当计数到 0xFFFF_H,下一次累加计数溢出,T16N_CNT0 的值为 0x0000,并产生中断,重新开始累加计数。

对设置的多个不同匹配值 T16N_MAT0/T16N_MAT1/T16N_MAT2/T16N_MAT3,当计数 值匹配到每一个匹配值时,会产生相应的中断。由于中断产生后,T16N 继续累加计数,若未及时读取匹配中断标志位并软件清除,则有可能后续的匹配中断也已产生,从而会同时读到多个有效的匹配中断标志。

如果 T16N_CNT0 的计数值匹配 T16N_MAT0/T16N_MAT1/T16N_MAT2/T16N_MAT3, 当 T16N_CON2 寄存器的 MOE0=1 时,T16N0OUT0 端口输出状态由 MOM0/MOM1<1:0>位控制; 当 MOE1=1 时,T16N0OUT1 端口输出状态由 MOM2/MOM3<1:0>位控制。可选择 T16N0OUT0/T16N0OUT1 端口同时输出。

举例说明: T16N_CNT0 计数值匹配 T16N_MAT0/T16N_MAT1/T16N_MAT2 后的工作方式。

T16N_MAT0<15:0>=0x0002, T16N_CON0 寄存器的 MAT0S<1:0>=00, 继续计数,不产生中断

T16N_MAT1<15:0>=0x0004, T16N_CON0 寄存器的 MAT1S<1:0>=11, 继续计数,产生中断;

T16N_MAT2<15:0>=0x0006, T16N_CON0 寄存器的 MAT2S<1:0>=10, 清零, 产生中断, 重新计数。

预分频设置为 1:1, 采用内部 PCLK 时钟源。计数匹配功能示意图如下所示:

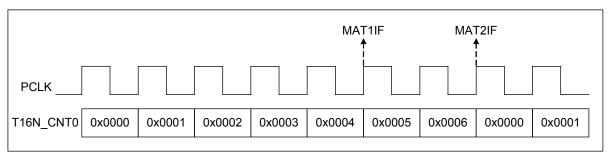


图 5-2 T16N0 计数匹配功能示意图

5. 1. 1. 4 T16N输入捕捉功能

设置 T16N_CON0 寄存器的 MOD<1:0>=10, 使 T16N 工作在捕捉模式。在捕捉模式下 T16N_CNT1 不可使用。

在捕捉工作模式下,需设置 T16N_CON0 寄存器的 CS<1:0>=00,使 T16N_CNT0 采用内部 PCLK 时钟源计数;并且设置 T16N_CON0 寄存器的 MAT0S/MAT1S/MAT2S/MAT3S <1:0>=00,计数匹配不影响 T16N CNT0 的工作。

在捕捉工作模式下,对端口 T16N0IN0 和 T16N0IN1 的状态进行检测。

当 T16N0IN0 端口的状态变化符合所设定的捕捉事件时,将 T16N_CNT0 和 T16N_PRECNT的当前值分别装载到T16N_MAT0和T16N_MAT2寄存器中,产生T16N 的 CAP0IF 中断。通过使能 T16N_CON1 寄存器的 CAPL0,可在 CAP0IF 中断时将 T16N_CNT0和 T16N_PRECNT清零;若 CAPL0为零,则计数器继续累加。

当 T16N0IN1 端口的状态变化符合所设定的捕捉事件时,将 T16N_CNT0 和 T16N_PRECNT的当前值分别装载到T16N_MAT1和T16N_MAT3寄存器中,产生T16N 的 CAP1IF 中断。通过使能 T16N_CON1 寄存器的 CAPL1,可在 CAP1IF 中断时将 T16N CNT0和T16N PRECNT清零;若 CAPL1为零,则计数器继续累加。

当 T16N_CNT0 计数直到溢出时,仍未检测到设定的捕捉事件,T16N_CNT0 的值被清零,并重新开始累加计数。

设置 T16N_CON1 寄存器的 CAPPE 和 CAPNE,可选择 T16N0IN0 和 T16N0IN1 端口信号的捕捉事件。

选择捕捉上升沿:只设置 CAPPE 为 1;

选择捕捉下降沿:只设置 CAPNE 为 1;

选择捕捉上升沿/下降沿:设置 CAPPE 为 1, CAPNE 为 1。

设置 T16N_CON1 寄存器的 CAPISO,选择 T16N0INO 是否作为捕捉输入端口;设置 CAPIS1,选择 T16N0IN1 是否作为捕捉输入端口;可同时选择两个端口作为捕捉输入端口。

设置 T16N_CON1 寄存器的 CAPT,可选择捕捉事件发生的次数。

举例说明: 捕捉 T16N0IN0 端口上升沿/下降沿, 捕捉 8 次; 预分频设置为 1:1。

T16N CON0 寄存器的 MOD<1:0>=10, CS<1:0>=00, MAT0S<1:0>=00,

T16N_CON1 寄存器的 CAPPE=1, CAPNE=1, CAPL0=1, CAPIS0=1, CAPT<3:0>=0111。

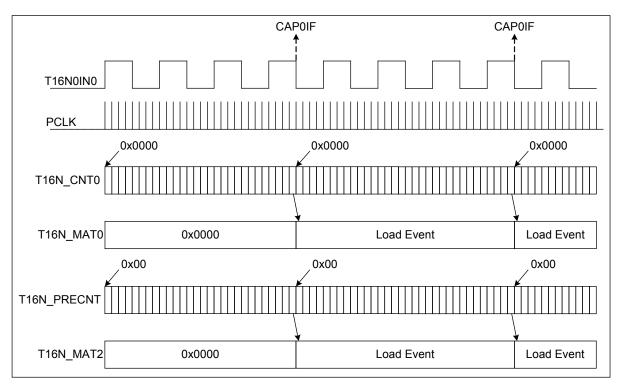


图 5-3 T16N0 捕捉功能示意图

在捕捉工作模式下,修改 T16N 预分频器计数匹配寄存器 T16N_PREMAT 时,预分频器计数不会被清零。因此,首次捕捉可以从一个非零预分频器计数开始。当捕捉事件匹配发生时,产生的中断标志位必须通过软件清除,并及时读取捕捉到的 T16N_MAT0/T16N_MAT2/T16N_MAT3 寄存器的值,在下一次捕捉事件发生时,T16N_MAT0/T16N_MAT1/T16N_MAT2/T16N_MAT3 寄存器会装载为新的计数值。

5. 1. 1. 5 T16N输出调制功能

设置 T16N CON0 寄存器的 MOD<1:0>=11, 使 T16N 工作在调制模式。

在调制工作模式下,需设置 T16N_CON0 寄存器的 CS<1:0>=00, 使 T16N_CNT0/T16N_CNT1 采用内部 PCLK 时钟源计数。

设置 T16N_CON2 寄存器的 MOE0,选择 T16N0OUT0 是否使能为匹配输出端口,端口的输出状态通过 MOM0<1:0>和 MOM1<1:0>进行控制,由 T16N_MAT0/T16N_MAT1 匹配寄存器和 T16N CNT0 进行计数匹配。

设置 T16N_CON2 寄存器的 MOE1,选择 T16N0OUT1 是否使能为匹配输出端口,端口的输出状态通过 PWMMOD<1:0>进行控制。在同步 PWM 模式下输出与 T16N0OUT0 相同的波形;在互补 PWM 模式下输出与 T16N0OUT0 互补的波形;在独立 PWM 模式下通过 MOM2<1:0>和 MOM3<1:0>进行控制,由 T16N_MAT2/T16N_MAT3 匹配寄存器和 T16N_CNT1 进行计数匹配。

设置 T16N_CON2 寄存器的 MOM0/MOM1/MOM2/MOM3,选择计数匹配发生时,对 T16N0OUT0/T16N0OUT1 端口的影响:保持,清零,置1,取反。

设置 T16N_CON2 寄存器的 PWMMOD<1:0>, 两路 PWM 可配置为独立/同步/互补三种模式:

独立模式,T16N0OUT0/ T16N0OUT1 输出不同的 PWM 波形。其中 T16N_CNT0 匹配 T16N_MAT0/T16N_MAT1, 控制 T16N0OUT0 输出,PWM 周期由 T16N_TOP0 设定,为 T16N_TOP0+1; 而 T16N_CNT1 匹配 T16N_MAT2/ T16N_MAT3, 控制 T16N0OUT1 输出,PWM 周期由 T16N_TOP1 设定,为 T16N_TOP1+1。

同步模式, T16N0OUT0/ T16N0OUT1 输出相同 PWM 波形, T16N_CNT0 匹配 T16N_MAT0/T16N_MAT1, 控制 T16N0OUT0/ T16N0OUT1 输出, PWM 周期由 T16N TOP0 设定, 为 T16N TOP0+1, 与 T16N CNT1 和 T16N TOP1 无关。

互补模式,T16N0OUT0/ T16N0OUT1 输出为互补 PWM 波形,死区时间宽度可配置,T16N_CNT0 匹配 T16N_MAT0/T16N_MAT1, 控制 T16N0OUT0/T16N0OUT1 输出,PWM 周期由 T16N_TOP0 设定,为 T16N_TOP0+1,与 T16N_CNT1 和 T16N_TOP1 无关。

调制工作模式下支持匹配 0、匹配 1、匹配 2、匹配 3、峰值 0 及峰值 1 触发 ADC:

T16N_MAT0、T16N_MAT1、T16N_MAT2、T16N_MAT3、T16N_TOP0 与 T16N_CNT0 计数值匹配,匹配时产生 ADC 触发信号;

T16N_TOP1 与 T16N_CNT1 计数值匹配, 匹配时产生 ADC 触发信号。

举例说明:

1) 独立模式, 在 T16N0OUT0 和 T16N0OUT1 端口, 产生双边 PWM 波形。

T16N CON2 寄存器中:

OE0=1, MOE1=1; T16N0OUT0 和 T16N0OUT1 匹配输出端口使能;

MOM0<1:0>=10; T16N_MAT0 匹配, T16N0OUT0 输出高电平;

MOM1<1:0>=01; T16N MAT1 匹配, T16N0OUT0 输出低电平;

MOM2<1:0>=10; T16N MAT2 匹配, T16N0OUT1 输出高电平;

MOM3<1:0>=01; T16N_MAT3 匹配, T16N0OUT1 输出低电平;

PWMMOD<1:0>=00;独立模式。

T16N CON0 寄存器中:

MOD<1:0>=11; T16N 设置为调制输出;

MATOS<1:0>=11; T16N_CNTO 继续计数,并产生中断;

MAT1S<1:0>=11; T16N_CNT0 继续计数,并产生中断;

MAT2S<1:0>=00; T16N CNT1 继续计数,不产生中断;

MAT3S<1:0>=10; T16N CNT1 清零,并重新计数。

设置其它寄存器:

T16N MAT0 = 0x0002; T16N MAT1 = 0x0004;

T16N MAT2 = 0x0006; T16N MAT3 = 0x0008;

设置合适的 T16N_TOP0/T16N_TOP1 值。

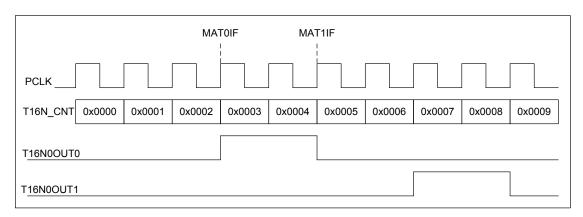


图 5-4 T16N0 独立 PWM 输出功能示意图

- 注 1: 若 T16N_MAT0 和 T16N_MAT1 设置了相同的值, 因 T16N_MAT0 匹配优先级高于 T16N_MAT1, T16N0OUT0 的输出电平取决于 MOM0 的设定。若 T16N_MAT2 和 T16N_MAT3 设置了相同的值, 因 T16N_MAT2 匹配优先级高于 T16N MAT3, T16N0OUT1 的输出电平取决于 MOM2 的设定。
- 注 2: 在 PWM 独立模式下,通过 T16N_CNT1 匹配 T16N_MAT2/T16N_MAT3, 控制 T16N0OUT1 输出,但匹配中断标志 MAT2IF 和 MAT3IF 的产生,仍与 T16N_CNT0 计数寄存器有关,使得这两个匹配中断与 T16N0OUT1 的 PWM 波形对应不一致,所以在 PWM 独立模式下,建议不要使用中断标志 MAT2IF 和 MAT3IF,也不要使用 T16N_MAT2、T16N_MAT3 的匹配来触发 ADC 转换。
 - 2) 互补模式,PCLK=48MHz,在T16N0OUT0和T16N0OUT1端口,产生24MHz互补PWM波形。

T16N CON2 寄存器中:

MOE0=1, MOE1=1, 即 T16N0OUT0 和 T16N0OUT1 匹配输出端口使能;

MOM0<1:0>=10,即 T16N_MAT0 匹配,T16N0OUT0 输出高电平,T16N0OUT1 输出 低电平;

MOM1<1:0>=01,即 T16N_MAT1 匹配,T16N0OUT0 输出低电平,T16N0OUT1 输出 高电平:

PWMMOD<1:0>=11,即互补PWM模式;PWMDZE=0,禁止死区时间

T16N_CON0 寄存器中:

MOD<1:0>=11; T16N 设置为调制输出;

MATOS<1:0>=11; T16N CNTO 继续计数,并产生中断;

MAT1S<1:0>=11; T16N CNT0 继续计数,并产生中断。

设置其它寄存器:

 $T16N_MAT0 = 0x0000; T16N_MAT1 = 0x0001; T16N_TOP0=0x0001;$

T16N_PREMAT=0,即不预分频。

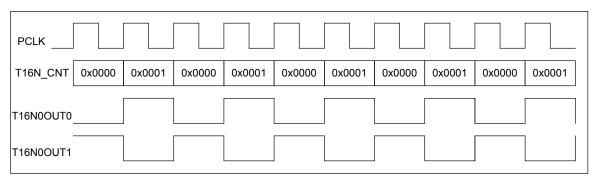


图 5-5 T16N0 互补 PWM 输出功能示意图

3) 带死区的互补模式,PCLK=48MHz,在T16N0OUT0和T16N0OUT1端口,产生带死区的互补PWM波形。

T16N CON2 寄存器中:

MOE0=1, MOE1=1, 即 T16N0OUT0 和 T16N0OUT1 匹配输出端口使能;

MOM0<1:0>=10, 即 T16N_MAT0 匹配, T16N0OUT0 输出高电平, T16N0OUT1 输出低电平;

MOM1<1:0>=01, 即 T16N_MAT1 匹配, T16N0OUT0 输出低电平, T16N0OUT1 输出 高电平;

PWMMOD<1:0>=11,即互补PWM模式;PWMDZE=1,使能死区时间。

T16N CON0 寄存器中:

MOD<1:0>=11; T16N 设置为调制输出;

MATOS<1:0>=11; T16N CNTO 继续计数,并产生中断;

MAT1S<1:0>=11; T16N_CNT0 继续计数,并产生中断。

设置其它寄存器:

T16N_MAT0, T16N_MAT1 和 T16N_TOP0 寄存器设定合适的值,以设定 PWM 周期,占空比等; T16N_PREMAT 可设定为较小值,如 0 值,即不预分频,使得死区时间和 PWM 占空比都有较高的精度。

如下图,作为对比,分别给出了无死区时间和带死区时间的 PWM 互补输出波形。需要注意的是,死区时间会对 T16N0OUT0 和 T16N0OUT1 的高电平宽度作等量压缩。

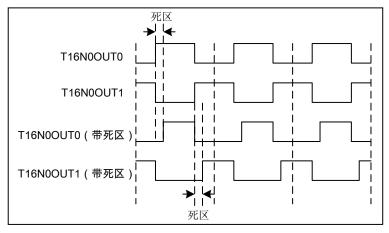


图 5-6 带死区的 T16N0 互补 PWM 输出功能示意图

V1.5 版权所有©上海东软载波微电子有限公司

5.1.1.6 特殊功能寄存器

T16N 计数值寄存器	(T16N	CNTO)
-------------	-------	-------

偏移地址: 00_H

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							保	:留							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	CNT0<15:0>														

_	bit31-16	_	_
CNT0<15:0>	bit 15-0	R/W	T16N_CNT0计数值

T16N 计数值寄存器(T16N_CNT1)

偏移地址: 04_H

复位值: 00000000_00000000_00000000_00000000B

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							保	:留							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

_	bit31-16		_
CNT1<15:0>	bit 15-0	R/W	T16N_CNT1计数值

T16N 预分频器计数值寄存器(T16N_PRECNT)

偏移地址: 08_H

复位值: 00000000_00000000_00000000_00000000B

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							保	:留							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
			保	留							PRECN	IT<7:0>			
			保	留							PRECN	IT<7:0>			

_	bit31-8		_
PRECNT<7:0>	bit7-0	R/W	T16N预分频器计数值

T16N 预分频器计数比例寄存器(T16N_PREMAT)

偏移地址: 0C_H

复位值: 00000000_00000000_00000000_000000000B

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							保	:留							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
			保	:留							PREMA	AT<7:0>			

_	bit31-8	_	_
PREMAT<7:0>	bit7-0	R/W	预分频比例设置位 00: 预分频1: 1 01: 预分频1: 2 02: 预分频1: 3 FE: 预分频1: 255 FF: 预分频1: 256

T16N 控制寄存器 0(T16N_CON0)

偏移地址: 10_H

复位值: 00000000_00000000_00000000_00000000_B

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							保留								ASYWEN
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
MAT38	S<1:0>	MAT2S	S<1:0>	MAT1	S<1:0>	MAT09	S<1:0>	MOD	<1:0>	EDGE	E<1:0>	SYNC	CS<	:1:0>	EN

_	bit 31~17	_	_
ASYWEN	bit 16	R/W	计数器写使能位 0: 使能写 T16N_CNT1; 在同步计数模式,定时模式和调制模式下,使能写 T16N_CNT0 和 T16N_PRECNT,在异步计数模式下,不要在 ASYWEN=0 时,写 T16N_CNT0 和 T16N_PRECNT,否则有可能写操作失败 1: 禁止写 T16N_CNT1; 在同步计数模式,定时模式和调制模式下,禁止写 T16N_CNT0 和 T16N_PRECNT,在 异步计数模式下,使能写 T16N_CNT0 和 T16N_PRECNT
MAT3S<1:0>	bit 15~14	R/W	T16N_CNT0/1 匹配 T16N_MAT3 后的工作模式选择位 00: T16N_CNT0/1 继续计数,不产生中断 01: T16N_CNT0/1 保持,产生中断 10: T16N_CNT0/1 清零并重新计数,产生中断 11: T16N_CNT0/1 继续计数,产生中断 (T16N_CNT1 只在独立 PWM 调制模式下计数和匹配)

			T16N_CNT0/1 匹配 T16N_MAT2 后的工作模式选择位
			100x_CNT0/T
			01: T16N CNT0/1 保持,产生中断
MAT2S<1:0>	bit 13~12	R/W	10: T16N_CNT0/1 清零并重新计数,产生中断
			10: 110N_CN10/1 指令开重新订数,
			(T16N_CNT1 只在独立 PWM 调制模式下计数和匹配)
			_
			T16N_CNT0 匹配 T16N_MAT1 后的工作模式选择位
			00: T16N_CNT0 继续计数,不产生中断
MAT1S<1:0>	bit 11~10	R/W	01: T16N_CNT0 保持,产生中断
			10: T16N_CNT0 清零并重新计数,产生中断
			11: T16N_CNT0 继续计数,产生中断
			T16N_CNT0 匹配 T16N_MAT0 后的工作模式选择位
			00: T16N_CNT0 继续计数,不产生中断
MAT0S<1:0>	bit 9~8	R/W	01: T16N_CNT0 保持,产生中断
			10: T16N_CNT0 清零并重新计数,产生中断
			11: T16N_CNT0 继续计数,产生中断
			工作模式选择位
		R/W	00: 定时/计数模式
MOD<1:0>	bit 7~6		01: 定时/计数模式
			10: 捕捉模式
			11: 调制模式
			外部时钟计数边沿选择位
			00: 上升沿计数
EDGE<1:0>	bit 5~4	R/W	01: 下降沿计数
			10: 上升沿/下降沿均计数(仅同步计数模式)
			11: 上升沿/下降沿均计数(仅同步计数模式)
			外部时钟同步使能位
			0: 不同步外部时钟 T16N0CK0/T16N0CK1, 为异步计数
SYNC	bit 3	R/W	模式
STNC	DIL 3	1 1/ 7 7	1: 通过 PCLK 对外部时钟 T16N0CK0/T16N0CK1 同步,
			为同步计数模式,外部时钟的高/低电平均至少保持 2 个
			PCLK 时钟周期
			T16N 计数时钟源选择位
			00: 内部时钟 PCLK
CS<1:0>	bit 2~1	R/W	01: 外部时钟 T16N0CK0
			10:外部时钟 T16N0CK1
			11: 内部时钟 PCLK
			T16N 使能位
EN	bit 0	R/W	0: 禁止
			1: 使能

注 1: PCLK 为芯片内部外设模块时钟源,时钟频率与芯片系统时钟频率相同。

注 2: 在定时/计数、PWM 调制模式(独立 PWM 模式除外)下,计数器 T16N_CNT0 的值与匹配寄存器 T16N_MAT0/T16N_MAT1/T16N_MAT2/T16N_MAT3 进行匹配,计数器 T16N_CNT1 不进行计数和匹配操作;在独立 PWM 调制模式下,即 PWMMOD=2'b0x,则计数器 T16N_CNT0 的值与 T16N_MAT0 和 T16N_MAT1 进行匹配,计数器 T16N_CNT1 的值与 T16N_MAT2 和 T16N_MAT3 进行匹配。

T16N 控制寄存器 1(T16N_CON1)

偏移地址: 14山

7周1多	沙地址: 1 4 H														
复位	位值: 00000000_00000000_000000000 _B														
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
									停留						
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		停	留			CAPL1	CAPL0		CAPT	<3:0>		CAPIS1	CAPIS0	CAPNE	CAPPE

			1
-	bit31-10	_	_
CAPL1	bit9	R/W	捕捉 1 重载计数器使能位 0: 禁止 1: 使能,T16N0IN1 端口的捕捉事件清零计数器 T16N_CNT0 和 T16N_PRECNT
CAPL0	bit8	R/W	捕捉 0 重载计数器使能位 0: 禁止 1: 使能,T16N0IN0 端口的捕捉事件清零计数器 T16N_CNT0 和 T16N_PRECNT
CAPT<3:0>	bit7-4	R/W	捕捉次数控制位 0: 捕捉 1 次后,产生装载动作 1: 捕捉 2 次后,产生装载动作 2: 捕捉 3 次后,产生装载动作 F: 捕捉 16 次后,产生装载动作
CAPIS1	bit3	R/W	捕捉输入端口 T16N0IN1 使能位 0:禁止 1:使能
CAPIS0	bit2	R/W	捕捉输入端口 T16N0IN0 使能位 0:禁止 1:使能
CAPNE	bit1	R/W	下降沿捕捉使能位0: 禁止1: 使能
CAPPE	bit0	R/W	上升沿捕捉使能位 0:禁止 1:使能

V1.5 136/352

T16N 控制寄存器 2(T16N_CON2)

偏移地址: 18_H

复位值: 00000000_00000000_00000000_000000000B

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							PWMBK	PWMB	PWMB			PWMBK	PWMBK	PWMBK	PWMBK
			保留				F	KP1	KP0	1	保留	L1	LO	E1	E0
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
MC)M3<1:	MON	/I2<1:	MON	/1<1:			tes exe	PWMD						
	0>	С)>	0	 >	МО	M0<1:0>	保留	ZE	PWMN	MOD<1:0>	POL1	POL0	MOE1	MOE0

	04.05		1
_	31-25		
			PWM 刹车事件标志位
PWMBKF	bit24	R/W	0: 未发生刹车事件
			1: 发生刹车事件, PWM 端口输出刹车电平; 软件
			写 1 清零,清零后 PWM 端口输出恢复正常
			PWM 通道 1 刹车信号极性选择位
PWMBKP1	bit23	R/W	0: 高电平刹车
			1: 低电平刹车
			PWM 通道 0 刹车信号极性选择位
PWMBKP0	bit22	R/W	0: 高电平刹车
			1: 低电平刹车
_	bit21-20	_	_
			PWM 通道 1 刹车输出电平选择位
			POL1=0 时:
			0: 输出低电平
PWMBKL1	bit19	R/W	1: 输出高电平
			POL1=1 时:
			0: 输出高电平
			1: 输出低电平
			PWM 通道 0 刹车输出电平选择位
			POL0=0 时:
			0: 输出低电平
PWMBKL0	bit18	R/W	1: 输出高电平
			POL0=1 时:
			0: 输出高电平
			1: 输出低电平
			PWM 通道 1 刹车使能位
PWMBKE1	bit17	R/W	0: 禁止
			1: 使能
			PWM 通道 0 刹车使能位
PWMBKE0	bit16	R/W	0: 禁止
			1: 使能
MOM3<1:0>	bit15-14	R/W	T16N_MAT3 匹配后的端口 1 工作模式选择位(仅

			大 <u>林</u> 子知即母子工士於 \
			在独立调制模式下有效)
			00: 匹配端口保持
			01: 匹配端口清零
			10: 匹配端口置 1
			11: 匹配端口取反
			T16N_MAT2 匹配后的端口 1 工作模式选择位(仅
			在独立调制模式下有效)
MOM2<1:0>	bit13-12	R/W	00: 匹配端口保持
	58.10 12		01: 匹配端口清零
			10: 匹配端口置 1
			11: 匹配端口取反
			T16N_MAT1 匹配后的端口 0 工作模式选择位
			00: 匹配端口保持
MOM1<1:0>	bit11-10	R/W	01: 匹配端口清零
			10: 匹配端口置 1
			11: 匹配端口取反
			T16N_MAT0 匹配后的端口 0 工作模式选择位
			00: 匹配端口保持
MOM0<1:0>	bit9-8	R/W	01: 匹配端口清零
			10: 匹配端口置 1
			11: 匹配端口取反
_	bit7	_	_
			PWM 互补模式死区使能位
PWMDZE	bit6	R/W	0: 禁止
			1: 使能
			PWM 模式选择位
DIAMAN A O.D 4. O.	1.75	D 444	0x: 独立
PWMMOD<1:0>	bit5-4	R/W	10: 同步
			11: 互补
			T16N0OUT1 输出极性选择位
POL1	bit3	R/W	0: 正极性
			1: 反极性
			T16N0OUT0 输出极性选择位
POL0	bit2	R/W	0: 正极性
			1: 反极性
			输出端口 1 使能位
MOE1	bit1	R/W	0: 禁止
		·	1: 使能
			输出端口 0 使能位
MOE0	bit0	R/W	0: 禁止
	Dito	1.777	1: 使能
			1. 以此

注 1: 刹车信号可通过 GPIO_PAFUNC 寄存器配置为 PA2/PA3/PA27/PA26 中的其中一个,而且只能选一个。

注 2: 在刹车使能的情况下,PWMBKF 标志位置 1 时,会硬件自动清零对应的输出端口使能位 MOE,该标志位清零后,还需软件重新设置使能位 MOE 为 1,PWM 端口输出才会恢复正常。

T16N 中断使能寄存器(T16N_IE)

偏移地址: 20_H

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
									保留						

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		保	留			PBK1IE	PBK0IE	CAP1IE	CAP0IE	TOP1IE	TOP0IE	MAT3IE	MAT2IE	MAT1IE	MATOIE

_	bit31-10	_	_
			PWM 通道 1 刹车中断使能位
PBK1IE	bit9	R/W	0: 禁止
			1: 使能
			PWM 通道 0 刹车中断使能位
PBK0IE	bit8	R/W	0: 禁止
			1: 使能
			输入端口 T16N0IN1 捕捉中断使能位
CAP1IE	bit7	R/W	0: 禁止
			1: 使能
			输入端口 T16N0IN0 捕捉中断使能位
CAP0IE	bit6	R/W	0: 禁止
			1: 使能
			T16N_CNT1 匹配计数峰值中断使能位
TOP1IE	bit5	R/W	0: 禁止
			1: 使能
			T16N_CNT0 匹配计数峰值中断使能位
TOP0IE	bit4	R/W	0: 禁止
			1: 使能
			匹配 3 中断使能位
MAT3IE	bit3	R/W	0: 禁止
			1: 使能
			匹配 2 中断使能位
MAT2IE	bit2	R/W	0: 禁止
			1: 使能
			匹配 1 中断使能位
MAT1IE	bit1	R/W	0: 禁止
			1: 使能
			匹配 0 中断使能位
MAT0IE	bit0	R/W	0: 禁止
			1: 使能

T16N 中断标志寄存器(T16N_IF)

偏移地址: 24_H

复位值: 00000000_00000000_00000000_00000000_B

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
									保留						

1	5	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
			保	留			PBK1IF	PBK0IF	CAP1IF	CAP0IF	TOP1IF	TOP0IF	MAT3IF	MAT2IF	MAT1IF	MAT0IF

_	bit31-10	_	_
			PWM 通道 1 刹车中断标志位
			0: 无刹车中断
PBK1IF	bit9	R/W	1: 通道 1 刹车事件产生
			软件写 1 清除标志位,写 0 无效
			PWM 通道 0 刹车中断标志位
PBK0IF	bit8	R/W	0: 无刹车中断
PDNUIF	DILO	FK/VV	1: 通道 0 刹车事件产生
			软件写 1 清除标志位,写 0 无效
			输入端口 1 捕捉成功中断标志位
CAP1IF	bit7	R/W	0: 输入端口 1 捕捉未成功
OAI III	Diti	17/77	1:输入端口 1 捕捉成功
			软件写 1 清除标志位,写 0 无效
			输入端口 0 捕捉成功中断标志位
CAP0IF	bit6	R/W	0: 输入端口 0 捕捉未成功
07 ti 011	Ditto	1077	1: 输入端口 0 捕捉成功
			软件写 1 清除标志位,写 0 无效
			T16N_CNT1 匹配计数峰值中断标志位
TOP1IF	bit5	R/W	0: 未匹配
			1. 匹配峰值
			软件写 1 清除标志位,写 0 无效
			T16N_CNT0 匹配计数峰值中断标志位
TOP0IF	bit4	R/W	0: 未匹配
			1: 匹配峰值
			软件写 1 清除标志位,写 0 无效
			匹配 3 中断标志位
MAT3IF	bit3	R/W	0: 计数器值与匹配寄存器 3 不相等
			1: 计数器值与匹配寄存器 3 相等
			软件写 1 清除标志位,写 0 无效
			匹配 2 中断标志位
MAT2IF	bit2	R/W	0: 计数器值与匹配寄存器 2 不相等
			1: 计数器值与匹配寄存器 2 相等
			软件写 1 清除标志位,写 0 无效
MAT1IF	bit1	R/W	匹配 1 中断标志位
			0: 计数器值与匹配寄存器 1 不相等

			1: 计数器值与匹配寄存器 1 相等 软件写 1 清除标志位,写 0 无效
MAT0IF	bit0	R/W	匹配 0 中断标志位 0: 计数器值与匹配寄存器 0 不相等 1: 计数器值与匹配寄存器 0 相等 软件写 1 清除标志位,写 0 无效

- 注 1: 在定时/计数、PWM 调制模式(独立 PWM 模式除外)下,计数器 T16N_CNT0 的值与匹配寄存器 T16N_MAT0/T16N_MAT1/T16N_MAT2/T16N_MAT3 进行匹配,计数器 T16N_CNT1 不进行计数和匹配操作;在独立 PWM 调制模式下,即 PWMMOD=2'b0x,则计数器 T16N_CNT0 的值与 T16N_MAT0 和 T16N_MAT1 进行匹配,计数器 T16N_CNT1 的值与 T16N_MAT2 和 T16N_MAT3 进行匹配。
- 注 2: T16N 中断禁止时,如果满足条件仍会置起对应的中断标志位,只是不会产生中断请求。
- 注 3: 对 T16N_IF 寄存器的各中断标志位,写 0 无效,写 1 才能清除标志位;读操作时,读取的值为 1 表示有中断发生。
- 注 4: 刹车使能时,即 PWMBKE0 或 PWMBKE1 置 1, T16N_IF 寄存器中的 PBK0IF 或 PBK1IF 中断标志位在刹车事件产生时才被置 1。

PWM 调制模式死区宽度寄存器(T16N_PDZ)

偏移地址: 28_H

复位值: 00000000_00000000_00000000_00000000B 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 保留

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
			保	留							PDZ	<7:0>			

_	bit31-8	_	_
PDZ<7:0>	bit7-0	R/W	PWM调制模式死区宽度寄存器 0x00: 死区为1个计数周期 0x01: 死区为2个计数周期 0xFF: 死区为 256 个计数周期

PWM 调制模式 ADC 触发寄存器(T16N_PTR)

偏移地址: 2CH

复位值: 00000000_00000000_000000000B

 31
 30
 29
 28
 27
 26
 25
 24
 23
 22
 21
 20
 19
 18
 17
 16

 保留

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		保留			P1TOP1	P1MAT3T	P1MAT2	保留	Р0ТОР0Т	P0MAT1TRE	P0MAT0TR	保留			
			IX.	ш				TRE	RE	TRE	水田	RE	FUMATTIRE	E	水田

_	bit31-8	_	_
			PWM 通道 1 峰值 1 触发使能
P1TOP1TRE	bit7	R/W	0: 禁止
			1: 使能触发 ADC 转换
			PWM 通道 1 匹配 3 触发使能
P1MAT3TRE	bit6	R/W	0: 禁止
			1: 使能触发 ADC 转换(仅 MAT3S≠00 时有效)
			PWM 通道 1 匹配 2 触发使能
P1MAT2TRE	bit5	R/W	0: 禁止
			1: 使能触发 ADC 转换(仅 MAT2S≠00 时有效)
_	bit4	_	_
			PWM 通道 0 峰值 0 触发使能
P0TOP0TRE	bit3	R/W	0: 禁止
			1: 使能触发 ADC 转换
			PWM 通道 0 匹配 1 触发使能
P0MAT1TRE	bit2	R/W	0: 禁止
			1: 使能触发 ADC 转换(仅 MAT1S≠00 时有效)
			PWM 通道 0 匹配 0 触发使能
P0MAT0TRE	bit1	R/W	0: 禁止
			1: 使能触发 ADC 转换(仅 MAT0S≠00 时有效)
_	bit0	_	_

T16N 计数匹配寄存器 0(T16N_MAT0)

偏移地址: 30_H

复位值: 00000000_00000000_111111111_1111111_B

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							保	:留							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	•		•		•	•	MAT0	<15:0>		•			•		

_	bit31-16	1	_
MAT0<15:0>	bit15-0	R/W	T16N计数匹配值0

T16N 计数匹配寄存器 1(T16N_MAT1)

偏移地址: 34_H

复位值	: 00000	000_000	00000_	11111111	_1111111	1 _B									
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	保留														
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
							MAT1	<15:0>							

V1.5 142/352

_	bit31-16	_	_
MAT1<15:0>	bit15-0	R/W	T16N计数匹配值1

T16N	计数匹配寄存器 2	2 (T16N	MAT2)
------	-----------	---------	-------

偏移地址: 38_H

复位值: 00000000_00000000_11111111_1111111_B

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							保	:留							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
							MAT2	<15:0>							

_	bit31-16	_	_
MAT2<15:0>	bit15-0	R/W	T16N计数匹配值2

T16N 计数匹配寄存器 3(T16N_MAT3)

偏移地址: 3C_H

复位值: 00000000_00000000_11111111_1111111_B

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	保留														
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
MAT3<15:0>															

_	bit31-16	1	_
MAT3<15:0>	bit15-0	R/W	T16N计数匹配值3

T16N_CNT0 计数峰值寄存器 0(T16N_TOP0)

偏移地址: 40_H

复位值: 00000000_00000000_11111111_1111111B

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	保留														
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
							TOP0	<15:0>							

_	bit31-16	1	_
TOP0<15:0>	bit15-0	R/W	T16N_CNT0计数峰值寄存器0

T16N_CNT1 计数峰值寄存器 1(T16N_TOP1)

__ 偏移地址: 44_H

1147776	•шп														
复位值	: 00000	000_000	000000_1	11111111	_1111111	1 _B									
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							保	:留							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

14	- 11	10	9	U		U	J	 J	 	U
				TOD1	<1E·0>					
				IOPI	15.02					

_	bit31-16	_	_
TOP1<15:0>	bit15-0	R/W	T16N_CNT1计数峰值寄存器1

5. 1. 1. 7 **T16N**应用说明

芯片支持 4 个 16 位定时器/计数器,分别为 T16N0, T16N1, T16N2 和 T16N3。

5.1.2 32 位定时器/计数器T32N(T32N0)

5.1.2.1 概述

- ◆ 1个8位可配置预分频计数器, 所产生分频时钟作为 T32N_CNT 计数器的定时或计数时钟
 - ◇ 预分频时钟源可选: PCLK 或 T32N0CK0/T32N0CK1
 - ◇ 预分频计数器可由 T32N_PRECNT 寄存器设定计数初值
 - ◇ 分频比由 T32N_PREMAT 寄存器设定
- ◆ 1 个 32 位可配置定时/计数寄存器 T32N_CNT
- ◆ 可配置定时/计数工作模式
 - ◇ 支持 4 组 32 位计数匹配寄存器 T32N_MAT0/T32N_MAT1/T32N_MAT2/ T32N_MAT3, 计数匹配后支持下列操作:
 - 产生中断
 - 支持 T32N CNT 计数寄存器三种操作:保持,清零,或继续计数
 - 支持 T32N0OUT0/T32N0OUT1 端口四种操作:保持,清零,置 1 或取反
 - ◇ 支持输入捕捉功能
 - 支持捕捉边沿可配置
 - 支持捕捉次数可配置
 - ◇ 支持输出调制功能 PWM

5.1.2.2 结构框图

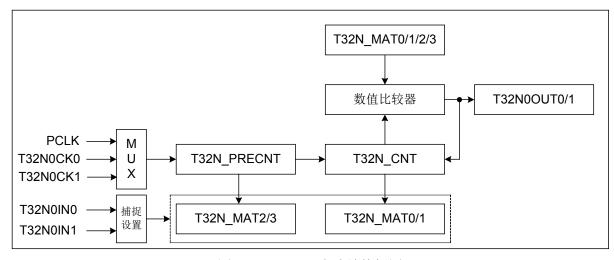


图 5-7 T32N0 电路结构框图

5. 1. 2. 3 T32N定时/计数功能

设置 T32N_CON0 寄存器的 MOD<1:0> =00 或 01, T32N 工作在定时/计数模式。

设置 T32N_CON0 寄存器的 EN=1,使能 T32N,计数值寄存器 T32N_CNT 从预设值开始累加计数。

设置 T32N_CON0 寄存器的 CS,选择择计数时钟源。时钟源为内部时钟 PCLK 时,为定时模式;时钟源为外部时钟 T32N0CK0/T32N0CK1 端口输入时,为计数模式。

设置 T32N_CON0 寄存器的 SYNC,选择外部时钟 T32N0CK0/T32N0CK1 是否被内部时钟 PCLK 同步。当选择外部时钟被同步时,为同步计数模式,否则为异步计数模式。同步计数模式时,T32N0CK0/T32N0CK1 端口输入的高/低电平脉宽均必须大于 2 个PCLK 时钟周期。

设置 T32N_CON0 寄存器的 EDGE,选择外部时钟计数方式:上升沿计数,下降沿计数,或上升/下降沿均计数,其中上升/下降沿均计数只适用于同步计数模式。

设置 T32N_CON0 寄存器的 MAT0S/MAT1S/MAT2S/MAT3S, 选择计数匹配后 T32N CNT 计数值寄存器的工作状态。

MAT0S/MAT1S/MAT2S/MAT3S<1:0>=00: 当 T32N_CNT 计数值匹配 T32N_MAT0/T32N_MAT1/T32N_MAT2/T32N_MAT3 时,继续累加计数,不产生中断,当计数到0xFFFFFFF 后,下一次累加计数溢出,T32N_CNT 的值为0x00000000,并产生中断,重新开始累加计数。

MAT0S/MAT1S/MAT2S/MAT3S<1:0>=01: 当 T32N_CNT 计数值匹配 T32N_MAT0/T32N_MAT1/T32N_MAT2/T32N_MAT3 时, 计数值将保持, 即在下一个计数时钟(经过预分频之后的时钟)到来时, T32N CNT 不再累加计数, 只产生中断。

MAT0S/MAT1S/MAT2S/MAT3S<1:0>=10: 当 T32N_CNT 计数值匹配 T32N_MAT0/T32N_MAT1/T32N_MAT2/T32N_MAT3 时, 计数值在下一个计数时钟(经过预分频之后的时钟)到来时被清零,并产生中断,重新开始累加计数。

MAT0S/MAT1S/MAT2S/MAT3S<1:0>=11: 当 T32N_CNT 计数值匹配 T32N_MAT0/T32N_MAT1/T32N_MAT2/T32N_MAT3 时,继续累加计数,并在下一个计数时钟(经过预分频之后的时钟)到来时,产生中断,当计数到 0xFFFFFFFF 后,下一次累加计数溢出,T32N_CNT 的值为 0x000000000,并产生中断,重新开始累加计数。对设置的多个不同匹配值 T32N_MAT0/T32N_MAT1/T32N_MAT2/T32N_MAT3,当计数值匹配到每一个匹配值时,会产生相应的中断。由于中断产生后,T32N 继续累加计数,若未及时读取匹配中断标志位并软件清除,则有可能后续的匹配中断也已产生,从而会同时读到多个有效的匹配中断标志。

如果 T32N_CNT 的计数值匹配 T32N_MAT0/T32N_MAT1/T32N_MAT2/ T32N_MAT3, 当 T32N_CON1 寄存器的 MOE0=1 时,T32N0OUT0 端口输出状态由 MOM0/MOM1<1:0>位控制;MOE1=1 时,T32N0OUT1 端口输出状态由 MOM2/MOM3<1:0>位控制。可选择 T32N0OUT0/T32N0OUT1 端口同时输出。

举例说明: T32N_CNT 计数值匹配 T32N_MAT0/T32N_MAT1/T32N_MAT2/T32N_MAT3 后的工作方式

T32N_CON0 寄存器中

MAT0<31:0>=0x00000002, MAT0S<1:0>=00, 继续计数, 不产生中断;

MAT1<31:0>=0x00000004, MAT1S<1:0>=11,继续计数,产生中断;

MAT2<31:0>=0x00000006, MAT2S<1:0>=10,清零,产生中断,重新计数。

预分频设置为 1:1, 采用内部 PCLK 时钟源。计数匹配功能示意图如下所示:

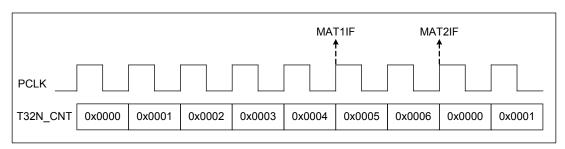


图 5-8 T32N0 计数匹配功能示意图

5. 1. 2. 4 T32N输入捕捉功能

设置 T32N_CON0 寄存器的 MOD<1:0>=10, 使 T32N 工作在捕捉模式。

在捕捉工作模式下,需设置 T32N_CON0 寄存器的 CS<1:0>=00,使 T32N_CNT 采用内部 PCLK 时钟源计数;并且设置 T32N_CON0 寄存器的 MAT0S/MAT1S/MAT2S/MAT3S <1:0>=00,计数匹配不影响 T32N_CNT 的工作。

在捕捉工作模式下,对端口 T32N0IN0 和 T32N0IN1 的状态进行检测。

当 T32N0IN0 端口的状态变化符合所设定的捕捉事件时,将 T32N_CNT 和 T32N_PRECNT的当前值分别装载到T32N_MAT0和T32N_MAT2寄存器中,产生T32N 的 CAP0IF 中断。通过使能 T32N_CON1 寄存器的 CAPL0,可在 CAP0IF 中断时将 T32N_CNT 和 T32N_PRECNT 清零,若 CAPL0 为零,则计数器继续累加计数。

当 T32N0IN1 端口的状态变化符合所设定的捕捉事件时,将 T32N_CNT 和 T32N_PRECNT的当前值分别装载到T32N_MAT1和T32N_MAT3寄存器中,产生T32N的 CAP1IF 中断,通过使能 T32N_CON1 寄存器的 CAPL1,可在 CAP1IF 中断时将 T32N CNT和T32N PRECNT清零,若 CAPL1为零,则计数器继续累加计数。

当 T32N_CNT 计数直到溢出时,仍未检测到设定的捕捉事件,T32N_CNT 的值被清零,并重新开始累加计数。

设置 T32N_CON1 寄存器的 CAPPE 和 CAPNE,可选择 T32N0IN0 和 T32N0IN1 端口信号的捕捉事件:捕捉上升沿,捕捉下降沿,捕捉上升沿/下降沿。

设置 T32N_CON1 寄存器的 CAPISO,选择 T32N0INO 是否作为捕捉输入端口;设置 CAPIS1,选择 T32N0IN1 是否作为捕捉输入端口;可同时选择两个端口作为捕捉输入端口。

设置 T32N CON1 寄存器中的 CAPT,可选择捕捉事件发生的次数。

当 MOE0=1 时,如果 T32N0IN0 端口捕捉事件发生,T32N0OUT0 端口输出翻转;

当 MOE1=1 时,如果 T32N0IN1 端口捕捉事件发生,T32N0OUT1 端口输出翻转。

举例说明: 捕捉 T32N0IN0 端口上升沿/下降沿, 捕捉 8次; 预分频设置为 1:1。

T32N_CON0 寄存器中

MOD<1:0>=10, CS<1:0>=00, MAT0S<1:0>=00;

T32N_CON0 寄存器中

CAPPE=1, CAPNE=1, CAPL0=1, CAPIS0=1, CAPT<3:0>=0111.

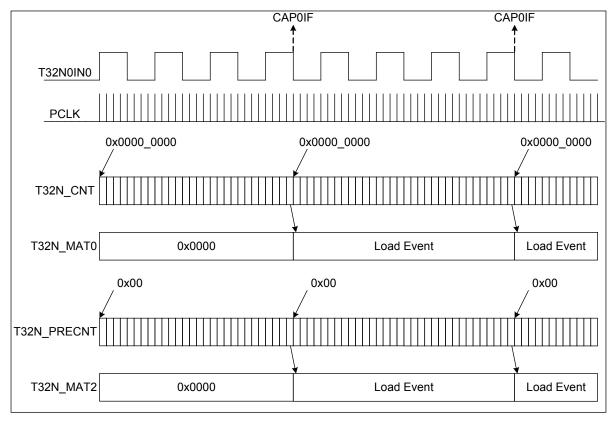


图 5-9 T32N0 捕捉功能示意图

在捕捉工作模式下,修改 T32N 预分频器计数匹配寄存器 T32N_PREMAT 时,预分频器计数不会被清零。因此,首次捕捉可以从一个非零预分频器计数开始。当捕捉事件匹配发生时,产生的中断标志位必须通过软件清除,并及时读取捕捉到的 T32N_MAT0/T32N_MAT1/T32N_MAT3 寄存器的值,在下一次捕捉事件发生时,T32N_MAT0/T32N_MAT1/T32N_MAT2/T32N_MAT3 寄存器会装载为新的计数值。

5. 1. 2. 5 T32N输出调制功能

设置 T32N CONO 寄存器的 MOD<1:0>=11, 使 T32N 工作在调制模式。

在调制工作模式下,需设置 T32N_CON0 寄存器的 CS<1:0>=00,使 T32N_CNT 采用内部 PCLK 时钟源计数。

设置 T32N_CON1 寄存器的 MOE0,选择 T32N0OUT0 是否使能为匹配输出端口,端口的输出状态通过 MOM0<1:0>和 MOM1<1:0>进行控制,由 T32N_MAT0/T32N_MAT1 匹配寄存器和 T32N_CNT 进行计数匹配;设置 MOE1,选择 T32N0OUT1 是否使能为匹配输出端口,端口的输出状态通过 MOM2<1:0>和 MOM3<1:0>进行控制,由 T32N_MAT2/T32N_MAT3 匹配寄存器和 T32N_CNT 进行计数匹配。

设置 MOM0/MOM1/MOM2/MOM3,选择计数匹配发生时,对 T32N0OUT0/T32N0OUT1 端口的影响:保持,清零,置 1,取反。

举例说明:在 T32N0OUT0 和 T32N0OUT1 端口,产生双边 PWM 波形。

MOE0=1, MOE1=1; T32N0OUT0 和 T32N0OUT1 匹配输出端口使能;

MOM0<1:0>=10; T32N_MAT0 匹配, T32N0OUT0 输出高电平; MOM1<1:0>=01; T32N_MAT1 匹配, T32N0OUT0 输出低电平; MOM2<1:0>=10; T32N_MAT2 匹配, T32N0OUT1 输出高电平; MOM3<1:0>=01; T32N MAT3 匹配, T32N0OUT1 输出低电平;

MAT0 = 0x00000002; T32N_MAT1 = 0x00000004; MAT2 = 0x00000006; T32N_MAT3 = 0x00000008;

MOD<1:0>=11; T32N 设置为调制输出

MAT0S<1:0>=11; T32N_CNT 继续计数,并产生中断 MAT1S<1:0>=11; T32N_CNT 继续计数,并产生中断 MAT2S<1:0>=11; T32N_CNT 继续计数,并产生中断 MAT3S<1:0>=10; T32N_CNT 清零,并产生中断

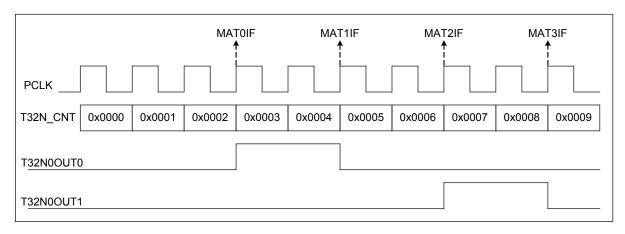


图 5-10 T32N0 输出调制功能示意图

注: 若 T32N_MAT0 和 T32N_MAT1 设置了相同的值,因 T32N_MAT0 匹配优先级高于 T32N_MAT1, T32N0OUT0 的输出电平取决于 MOM0 的设定。若 T32N_MAT2 和 T32N_MAT3 设置了相同的值,因 T32N_MAT2 匹配优先级高于 T32N_MAT3, T32N0OUT1 的输出电平取决于 MOM2 的设定。

5.1.2.6 特殊功能寄存器

T32N 1	计数值寄	存器(T	32N_CN	Γ)											
偏移地	址: 00 _H														
复位值	: 00000	000_000	000000_0	000000	0_00000	0000 _B									
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							CNT	<31:16>							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
							CNT	¯<15:0>							
	CNT	<31:0>		bit 3	31-0	R/\	W	T32N	计数值	•					

T32N 控制寄存器 0(T32N_CON0)

偏移地址: 04_H

复位值: 00000000_00000000_00000000_00000000_B

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
						,	保留								ASYNCWREN
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
MAT3	S<1:0>	MAT2	!S<1:0>	MAT19	S<1:0>	MAT0	S<1:0>	MOD	<1:0>	EDGE	<1:0>	SYNC	CS<	1:0>	EN

_	bit31-17	_	_
	DILO 1-17		│ │ 外部时钟异步计数模式下,对计数器的写使能位
			0: 禁止写 T32N CNT 和 T32N PRECNT, 如果强
ASYNC_WREN	bit16	R/W	制写,有可能写操作不成功(为避免对计数器的
ASTNO_WILLIN	DILTO	IN/VV	写操作错误,不建议用户对该位写 0)
			1: 使能写 T32N CNT 和 T32N PRECNT
			T32N_CNT 匹配 T32N_MAT3 后的工作模式选择位
			132N_CNT
MAT3S<1:0>	bit15-14	R/W	00: T32N_CNT 继续计数,不广至中断
WAT 33 \ 1.0 >	DIC13-14	IN/VV	10: T32N_CNT
			10: T32N_CNT
			T32N_CNT 匹配 T32N_MAT2 后的工作模式选择位
			132N_CN1
MAT2S<1:0>	bit13-12	R/W	00: T32N_CNT 继续计数,不广至中断
WA123~1.02	DIL13-12	I IN/VV	10: T32N_CNT 保持, 产生中断 10: T32N CNT 清零并重新计数, 产生中断
			10: 132N_CNT
			T32N_CNT 匹配 T32N_MAT1 后的工作模式选择位
			132N_CN1
MAT1S<1:0>	bit11-10	R/W	00: T32N_CNT 继续计数,不广至平断
WAT 13~1.02	DILTT-10	IN/VV	10: T32N_CNT 清零并重新计数,产生中断
			10: T32N_CNT 指令开重新计数, 产生中断
			T32N_CNT 匹配 T32N_MAT0 后的工作模式选择位
			00: T32N CNT 继续计数,不产生中断
MAT0S<1:0>	bit9-8	R/W	00: T32N_CNT
WAT00 \ 1.02	Dito-0	17,44	10: T32N CNT 清零并重新计数,产生中断
			11: T32N_CNT 继续计数,产生中断
			工作模式选择位
			00: 定时/计数模式
MOD<1:0>	bit7-6	R/W	01: 定时/计数模式
WOD 11.05	Ditr 0	1000	10: 捕捉模式
			11: 调制模式
			外部时钟计数边沿选择位
			00: 上升沿计数
EDGE<1:0>	bit5-4	R/W	01: 下降沿计数
			10: 上升沿/下降沿均计数(仅同步计数模式)
			10. 工月1日11 15年1日初月 从 \ 区門夕月 双法科力

			11: 上升沿/下降沿均计数(仅同步计数模式)
			外部时钟同步使能位
			0:不同步外部时钟 T32N0CK0/T32N0CK1,为异步
SYNC	hito	DAM	计数模式
STING	bit3	R/W	1: 通过 PCLK 对外部时钟 T32N0CK0/T32N0CK1 同
			步,为同步计数模式,外部时钟的高/低电平均至
			少保持 2 个 PCLK 时钟周期
			T32N 计数时钟源选择位
			00: 内部时钟 PCLK
CS<1:0>	bit2-1	R/W	01:外部时钟 T32N0CK0 时钟输入
			10:外部时钟 T32N0CK1 时钟输入
			11 : 内部时钟 PCLK
			T32N使能位
EN	bit0	R/W	0: 禁止
			1: 使能

T32N 控制寄存器 1(T32N_CON1)

偏移地址: 08_H

复位值	i: 0000	0000_0	0000000	000000	000_000	00000 _B					

	31	30	29	28	21	20	25	24	23	22	۷١	20	19	18	17	10
	MOM3<1:0>		MOM2<1:0>		MOM	1<1:0>	:0> MOM0<1					保留			MOE1	MOE0
-	15 14		13	12	11	10	9	8	7	6	5	4	3	2	1	0
			俣	函			CAPI 1	CAPIO		СДРТ	<3·0>		CAPIS1	CAPISO	CAPNE	CAPPE

			T32N_MAT3 匹配后的端口 1 工作模式选择位
			00: 匹配端口保持
MOM3<1:0>	bit31-30	R/W	01: 匹配端口清零
			10: 匹配端口置 1
			11: 匹配端口取反
			T32N_MAT2 匹配后的端口 1 工作模式选择位
			00: 匹配端口保持
MOM2<1:0>	bit29-28	R/W	01: 匹配端口清零
			10: 匹配端口置 1
			11: 匹配端口取反
			T32N_MAT1 匹配后的端口 0 工作模式选择位
			00: 匹配端口保持
MOM1<1:0>	bit27-26	R/W	01: 匹配端口清零
			10: 匹配端口置 1
			11: 匹配端口取反
			T32N_MAT0 匹配后的端口 0 工作模式选择位
MOM0<1:0>	hit25 24	D/M/	00: 匹配端口保持
IVIOIVIO~1.U/	bit25-24	R/W	01: 匹配端口清零
			10: 匹配端口置 1

			11: 匹配端口取反
_	bit23-18	_	_
			输出端口1使能位
MOE1	bit17	R/W	0: 禁止
			1: 使能
			输出端口 0 使能位
MOE0	bit16	R/W	0: 禁止
			1: 使能
_	bit15-10	_	_
			捕捉 1 重载计数器使能位
CADLA	h:10	147	0: 禁止
CAPL1	bit9	W	1: 使能, T32N0IN1 端口的捕捉事件清零计数器
			T32N_CNT 和 T32N_PRECNT
			捕捉 0 重载计数器使能位
CAPL0	bit8	W	0: 禁止
CAFLO	Dito	VV	1: 使能,T32N0IN0 端口的捕捉事件清零计数器
			T32N_CNT 和 T32N_PRECNT
			捕捉次数控制位
			0: 捕捉 1 次后,产生装载动作
CAPT<3:0>	bit7-4	R/W	1: 捕捉 2 次后,产生装载动作
O/11 1 10.02	Dit/ T	1000	2: 捕捉 3 次后,产生装载动作
			F: 捕捉 16 次后,产生装载动作
			捕捉输入端口 1 使能位
CAPIS1	bit3	R/W	0: 禁止
			1: 使能
			捕捉输入端口 0 使能位
CAPIS0	bit2	R/W	0: 禁止
			1: 使能
			下降沿捕捉使能位
CAPNE	bit1	R/W	0: 禁止
			1: 使能
			上升沿捕捉使能位
CAPPE	bit0	R/W	0: 禁止
			1: 使能

T32N 预分频器计数值寄存器(T32N_PRECNT)

偏移地址: 10_H

复位值: 00000000_00000000_00000000_000000000B 28 27 保留 14 13 PRECNT<7:0> 保留

_	bit31-8	_	_
PRECNT<7:0>	bit7-0	R/W	T32N预分频器计数值

T32N 预分频器计数比例寄存器(T32N_PREMAT)

偏移地址: 14_H

复位值: 00000000_00000000_00000000_00000000B

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							保	:留							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
			保	:留							PREMA	AT<7:0>			

_	bit31-8	_	_
PREMAT<7:0>	bit7-0	R/W	预分频比例设置 00: 预分频1: 1 01: 预分频1: 2 02: 预分频1: 3 FE: 预分频1: 255 FF: 预分频1: 256

T32N 中断使能寄存器(T32N_IE)

偏移地址: 18日

偏移均	也址: 1	8 _H													
复位化	夏位值: 00000000_00000000_000000000 _B														
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
									保留						
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
				保留					CAP1IE	CAP0IE	ΙE	MAT3IE	MAT2IE	MAT1IE	MAT0IE

_	bit31-7	_	_
			输入端口 1 捕捉中断使能位
CAP1IE	bit6	R/W	0: 禁止
			1: 使能
			输入端口 0 捕捉中断使能位
CAP0IE	bit5	R/W	0: 禁止
			1: 使能
			匹配 0xFFFFFFFF 中断使能位
ΙE	bit4	R/W	0: 禁止
			1: 使能
			匹配 3 中断使能位
MAT3IE	bit3	R/W	0: 禁止
			1: 使能

MAT2IE	bit2	R/W	匹配 2 中断使能位 0:禁止 1:使能
MAT1IE	bit1	R/W	匹配 1 中断使能位 0:禁止 1:使能
MAT0IE	bit0	R/W	匹配 0 中断使能位 0:禁止 1:使能

T32N 中断标志寄存器(T32N_IF)

偏移均	也址: 1	C _H													
复位化	复位值: 00000000_00000000_00000000 _B														
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	保留														
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
				保留					CAP1IF	CAP0IF	IF	MAT3IF	MAT2IF	MAT1IF	MAT0IF

_	bit31-7	_	_
CAP1IF	bit6	R/W	输入端口 1 捕捉成功中断标志位 0:输入端口 1 捕捉未成功 1:输入端口 1 捕捉成功 软件写 1 清除标志位,写 0 无效
CAP0IF	bit5	R/W	输入端口 0 捕捉成功中断标志位 0:输入端口 0 捕捉未成功 1:输入端口 0 捕捉成功 软件写 1 清除标志位,写 0 无效
IF	bit4	R/W	匹配 0xFFFFFFFF 中断标志位 0: 计数器值不等于 0xFFFFFFFF 1: 计数器值等于 0xFFFFFFFF 软件写 1 清除标志位,写 0 无效
MAT3IF	bit3	R/W	匹配 3 中断标志位 0: 计数器值与匹配寄存器 3 不相等 1: 计数器值与匹配寄存器 3 相等 软件写 1 清除标志位,写 0 无效
MAT2IF	bit2	R/W	匹配 2 中断标志位 0: 计数器值与匹配寄存器 2 不相等 1: 计数器值与匹配寄存器 2 相等 软件写 1 清除标志位,写 0 无效
MAT1IF	bit1	R/W	匹配 1 中断标志位 0: 计数器值与匹配寄存器 1 不相等 1: 计数器值与匹配寄存器 1 相等 软件写 1 清除标志位,写 0 无效

V1.5 154/352

			匹配 0 中断标志位
MAT0IF	bit0	R/W	0: 计数器值与匹配寄存器 0 不相等 1: 计数器值与匹配寄存器 0 相等 软件写 1 清除标志位,写 0 无效
			扒什为「俏麽你心世,为 し 儿双

- 注 1: 在定时/计数,调制模式下,计数器 T32N_CNT 的值与匹配寄存器 T32N_MAT0/T32N_MAT1/T32N_MAT2/T32N_MAT3 进行匹配。
- 注 2: T32N 中断禁止时,如果满足条件仍会置起对应的中断标志位,只是不会产生中断请求。
- 注 3: 对 T32N_IF 寄存器的各中断标志位,写 0 无效,写 1 才能清除标志位;读操作时,读取的值为 1 表示有中断发生。

T32N	计数匹配	寄存器 0	(T32N_	MAT0)												
偏移地	址: 20 _H															
复位值	į: 111111	11_1111	1111_111	11111_1	1111111 _B	i										
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	
							MATO	<31:16>								
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
							MAT	0<15:0>								
	MAT0	<31:0>	>	bit3	31-0	R۸	N	T32N	计数匹	配值0						
		寄存器 1	(T32N_	MAT1)												
	址: 24 _H															
复位值	[: 111111	11_1111	1111_111	11111_1	1111111 _B											
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	
							MAT1	<31:16>								
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
							MAT	1<15:0>								
	MAT1	<31:0>	>	bit3	31-0	R۸	N	T32N	计数匹	配值1						
T32N -	计数匹配	寄左哭 2	(T32N_	MAT2)	_	_		_	_	_	_	_	_	_		
	址: 28 _H	14 MM —		·····-/												
		11_1111	1111_111	11111_1	1111111 _B											
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	
							MAT2	2<31:16>								
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
							MAT	2<15:0>								
	N44T0	.04.6			14.0	F.4	•	—	1 18/. 1	- 					 1	
	MAT2<31:0> bit31-0 R/W						/V	T32N计数匹配值2								

V1.5 155/352

T32N 计数匹配寄存器 3(T32N_MAT3) 偏移地址: 2CH MAT3<31:16> MAT3<15:0> MAT3<31:0> bit31-0 R/W T32N计数匹配值3

5. 1. 2. 7 **32N**应用说明

芯片支持 1 个 32 位定时器/计数器 T32N0。

5. 2 通用异步接收/发送器(UART0/UART1)

以 UARTO 为例, UART1 参考 UART0

5.2.1 概述

- ◇ 支持异步接收和异步发送
- ◇ 支持内置波特率发生器,支持 4 位小数波特率和 12 位整数波特率
- ◇ 兼容 RS-232/RS-442/RS-485 的通讯接口
- ◇ 支持全/半双工通讯模式
- ◇ 异步接收器
- 支持独立的接收移位寄存器
- 支持硬件自动波特率检测
- 支持8级接收缓冲器
- 支持 7/8/9 位数据格式可配,支持奇偶校验功能可配
- 支持硬件自动奇偶校验位判断
- 支持空闲帧检测
- 支持接收 FIFO 中断: 字节满中断、半字满中断、字满中断、全满中断
- 支持 3 类接收错误中断:接收 FIFO 溢出错误、奇偶校验错误、帧结束错误

◇ 异步发送器

- 支持独立的发送移位寄存器
- 支持 8 级发送 FIFO
- 支持 7/8/9 位数据格式可配,支持奇偶校验功能可配
- 支持 1/2 位停止位可配
- 支持硬件自动产生发送奇偶校验位
- 支持发送 FIFO 中断: 字节空中断、半字空中断、字空中断、全空中断
- 支持发送 FIFO 写入错误中断
- ◇ 支持 PWM 调制输出,且 PWM 占空比线性可调
- ◇ 支持 UART 输入输出通讯端口极性可配置
- ◇ UART 接收端口支持红外唤醒功能

5.2.2 结构框图

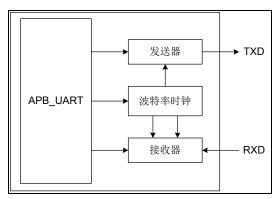


图 5-71 UART 电路结构图

V1.5 157/352

5. 2. 3 UART数据格式

UART 通讯每帧数据由 1 位起始位,7/8/9 位数据位、可配置奇偶校验位和停止位组成。UART_CON0 寄存器中配置 TXMOD 和 RXMOD 选择发送和接收的数据格式,配置 TXFS 选择发送 1 位或 2 位停止位。接收数据时,只判断第 1 位停止位,若不为高电平则产生"帧错误"中断标志。在没有数据传输时,通讯端口处于高电平状态。

帧数据格式如下图所示:

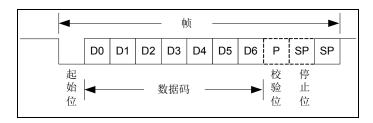


图 5-82 UART 7 位数据格式



图 5-93 UART 8 位数据格式

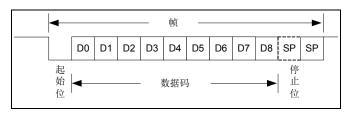


图 5-104 UART 9 位数据格式

数据发送和接收时,均是低位在前,高位在后,即先发送或接收数据的 LSB。通过发送数据寄存器 UART_TBW 写入发送的数据,通过接收数据寄存器 UART_RBR 读取接收的数据。

5. 2. 4 UART异步发送器

发送数据时,起始位 START 和停止位 STOP 由芯片硬件电路自动产生,用户只需要配置相应的 I/O 端口复用功能;配置 UART_BRR 和 UART_CON0 寄存器的 BCS,设定传输波特率;UART_CON0 寄存器中配置 TXMOD,选择发送的数据格式;配置 TXFS,选择发送的停止位数;配置 TXEN,使能数据发送;将要发送的数据写入发送数据寄存器UART_TBW,就可以开始数据的异步发送。如果数据格式支持奇偶校验位,硬件电路会根据相应的数据位产生校验位,在数据位后自动发送校验位。

配置 UART_CON0 寄存器的 TXP,可选择发送端口极性。选择为正极性时,发送端口的数据与被发送数据一致;选择为负极性时,发送端口的数据与被发送数据相反,即被发送数据位为 1 时,发送端口的数据位为 0。

支持 8 级发送缓冲器 TB0~TB7 和 1 级发送移位寄存器,可进行数据的连续发送,直到发

送缓冲器和移位寄存器全空,最多可连续写入和发送 9 帧数据,配置 UART_CON0 寄存器的 TXFS 可选择相邻两帧数据发送的时间间隔。发送缓冲器 TB0~TB7 为只读寄存器,只能通过发送数据寄存器 UART_TBW 写入。

发送数据寄存器 UART_TBW 为一个虚拟地址单元,物理上不存在实际的寄存器电路,写该寄存器地址单元时,实际上是将发送数据写入到发送缓冲器 TB0~TB7 中,再传输到发送移位寄存器,通过发送端口 TX0 进行数据发送。

发送数据寄存器 UART_TBW 支持 3 种写入方式:字节写入,半字写入和字写入。

当发送数据为 7 位和 8 位数据格式时:字节方式写入 UART_TBW 时,发送数据被写入到发送缓冲器 TB7;半字方式写入 UART_TBW 时,发送数据被同时写入到发送缓冲器 TB7和 TB6,其中低字节存放在 TB6中;字方式写入 UART_TBW 时,发送数据被同时写入到发送缓冲器 TB7,TB6,TB5和 TB4,其中低字节存放在 TB4中。

当发送数据为 9 位数据格式时: 只能以半字或字方式写入 UART_TBW, 且发送数据均被写入到发送缓冲器 TB7。

发送数据从写入到发送到端口的数据流示意图如下所示:

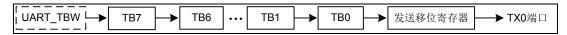


图 5-115 UARTO 发送数据流示意图

当发送缓冲器 TB0~TB7 被写入数据时,硬件自动置起 UART_TB0~UART_TB7 寄存器的空满标志 TBFF0~TBFF7=1,当发送缓冲器 TB0~TB7 的数据移到下一级缓冲器或发送移位寄存器后,硬件自动清除空满标志 TBFF0~TBFF7。当缓冲器 TB7 的发送空满标志 TBFF7 为 1 时,表示 8 级发送缓冲器和发送移位寄存器均满,此时如果仍继续写入 UART_TBW,则会置起写发送缓冲溢出中断标志 TBWOIF,同时新写入的数据无效,缓冲器数据仍保持。当字节写操作地址非最低字节,或半字写操作地址非低半字时,则会置起写发送缓冲错误中断标志 TBWEIF,同时新写入的数据无效,缓冲器数据仍保持。

当发送端口正在发送数据时,会置起发送状态位 TXBUSY=1, 当 8 级发送缓冲器和发送移位寄存器均空时,会置起 UART_IF 寄存器的发送完成中断标志 TCIF,并清除发送状态位 TXBUSY=0,表示当前的数据发送进程结束。

支持发送缓冲器空中断,配置 UART_CON1 寄存器中 TBIM,可选择中断模式。

TBIM<1:0>=00,为字节空产生中断,即发送缓冲器 TB7 为空时,会置起 UART_IF 寄存器的发送缓冲器空中断标志 TBIF;

TBIM<1:0>=01,为半字空产生中断,即发送缓冲器 TB7 和 TB6 均为空时,会置起 UART_IF 寄存器的发送缓冲器空中断标志 TBIF;

TBIM<1:0>=10,为字空产生中断,即发送缓冲器 TB7~TB4 均为空时,会置起 UART_IF 寄存器的发送缓冲器空中断标志 TBIF;

TBIM<1:0>= 11,为全空产生中断,即发送缓冲器 TB7~TB0 均为空时,会置起 UART_IF 寄存器的发送缓冲器空中断标志 TBIF。

配置 UART_CON0 寄存器中 TBCLR,可将写入发送缓冲器的全部数据清空,同时清除 UART_TB0~UART_TB7寄存器的各发送缓冲器 TB0~TB7的空满标志 TBFF0~TBFF7=0。被清空的发送缓冲器中的数据将不会被发送,但移位寄存器中的数据仍将会被发送。

UART_CON0 寄存器中配置 TRST,可将异步发送器软件复位,复位后:禁止数据发送 TXEN=0;禁止 UART_IE 寄存器中发送相关中断 TBIE=0,TBWEIE=0;复位 UART_IF 寄存器的相关中断标志为默认值 TBIF=1,TBWEIF=0;清除发送忙标志 TXBUSY=0;清除各发送缓冲器空满标志 TBFF0~TBFF7=0。

在发送数据时,可以先写发送数据寄存器 UART_TBW,再使能发送 TXEN,开始数据发送;也可以先使能发送 TXEN,再写发送数据寄存器 UART_TBW,开始数据发送。UART 发送缓冲器共有 8 级(即 8 个字节),发送缓冲器空中断标志位 TBIF 初始值为 1,该中断标志位的清除与发送缓冲空中断模式选择(由 TBIM<1:0>设置)和发送数据寄存器 UART TBW 的写操作有关。例如:

- 1) 当 TBIM<1:0>=00 (字节空产生中断)时,需填满 8 级缓冲器(以字方式连续写两次 UART_TBW),才能清除中断标志位 TBIF,当发送第一个字节的起始位时(第一级发送缓冲器的数据传输到发送移位寄存器,变为空),TBIF 位会再次被置起;
- 2) 当 TBIM<1:0>=11(全空产生中断)时,填写 1 级以上缓冲器(以任何方式写一次 UART_TBW),即可清除中断标志位 TBIF,当发送最后一个字节的起始位时(第八级 发送缓冲器的数据传输到发送移位寄存器,变为空),TBIF 位会再次被置起。

发送数据的操作流程图示例如下(以先使能 TXEN,再写 UART TBW 为例):

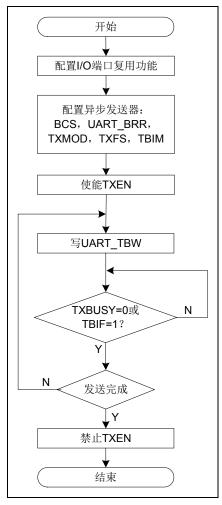


图 5-12 UART0 发送数据操作流程图示例

V1.5 160/352

5. 2. 5 UART异步接收器

接收数据时,配置相应的 I/O 端口复用功能;配置 UART_BRR 寄存器和 UART_CON1 寄存器的 BCS,设定传输波特率;配置 RXMOD,选择接收的数据格式;配置 RXEN,使能数据接收,就可以开始数据的异步接收。如果数据格式支持奇偶校验位,硬件电路会自动判断奇偶校验位是否正确,若不正确则会置起 UART_IF 寄存器的奇偶校验错误中断标志 PEIF。如果接收到的第 1 位停止位不为高电平,则会置起 UART_IF 寄存器的帧错误中断标志 FEIF。

UART_CON0 寄存器中配置 **RXP**,可选择接收端口极性。选择为正极性时,接收端口的数据即作为接收数据,选择为负极性时,接收端口的数据取反后,作为接收数据,即接收端口的数据位为 **1** 时,接收的数据位为 **0**。

支持 8 级接收缓冲器 RB0~RB7 和 1 级接收移位寄存器,可进行数据的连续接收,直到接收缓冲器和移位寄存器全满,最多可连续接收 9 帧数据,再执行数据读取操作。读取接收数据寄存器 UART_RBR,可得到接收的数据,对应的接收缓冲器清除 UART_RB0~UART_RB7 寄存器的满标志 RBFF0~RBFF7; 也可以读取接收缓冲器 RB0~RB7 得到接收的数据,但不会清除满标志 RBFF0~RBFF7。

接收数据寄存器 UART_RBR 为一个虚拟地址单元,物理上不存在实际的寄存器电路,读该寄存器地址单元时,实际上是读取接收缓冲器 RB0~RB7 中的数据。

接收数据寄存器 UART RBR 支持 3 种读取方式:字节读取,半字读取和字读取。

当接收数据为7位和8位数据格式时:字节方式读取UART_RBR时,实际是读取接收缓冲器RB0的数据;半字方式读取UART_RBR时,实际是同时读取接收缓冲器RB0和RB1的数据,其中RB0中的数据为低字节;字方式读取UART_RBR时,实际是同时读取接收缓冲器RB0,RB1,RB2和RB3,其中RB0中的数据为低字节。

当接收数据为 9 位数据格式时: 只能以半字或字方式读取 UART_RBR, 且均是读取接收 缓冲器 RB0 的数据。

接收数据从接收端口到各级缓冲器的数据流示意图如下所示:

图 5-137 UARTO 接收数据流示意图

接收缓冲器 RB0~RB7 的数据移到下一级缓冲器后,会清除其接收满标志 RBFF0~RBFF7。

当8级接收缓冲器和1级接收移位寄存器均满时,如果再次接收到数据起始位,会置起接收数据溢出中断标志ROIF,同时不会接收新数据,缓冲器数据仍保持。

当8级接收缓冲器和接收移位寄存器均空时,会清除接收忙标志RXBUSY,表示当前无数据接收。

支持接收缓冲器满中断,配置 UART_CON1 寄存器的 RBIM,可选择中断模式。

RBIM<1:0>=00,为字节满产生中断,即接收缓冲器 RB0 为满时,会置起 UART_IF 寄存器的中断标志 RBIF;

RBIM<1:0>=01,为半字满产生中断,即接收缓冲器RB0和RB1均为满时,会置起UART_IF寄存器的中断标志RBIF;

RBIM<1:0>=10,为字满产生中断,即接收缓冲器 RB0~RB3 均为满时,会置起 UART_IF 寄存器的中断标志 RBIF:

RBIM<1:0>= 11,为全满产生中断,即接收缓冲器 RB0~RB7 均为满时,会置起 UART_IF 寄存器的中断标志 RBIF。

配置 UART_CON0 寄存器 RBCLR,可将接收缓冲器接收到的全部数据清空,同时清除各接收缓冲器满标志 RBFF0~RBFF7=0,已经在接收过程中的数据将不受影响。

配置 UART_CON0 寄存器 RRST,可将异步接收器软件复位,复位后:禁止数据接收RXEN=0;UART_IE 寄存器中禁止接收相关中断 RBIE=0,ROIE=0,FEIE=0,PEIE=0;UART_IF 寄存器中复位相关中断标志为默认值 RBIF=0,ROIF=0,FEIF=0,PEIF=0;清除接收忙标志 RXBUSY=0;清除各接收缓冲器满标志 RBFF0~RBFF7=0;清除各接收缓冲器错误标志 FE0~FE7=0,PE0~ PE0=0。

接收数据的操作流程图示例如下:

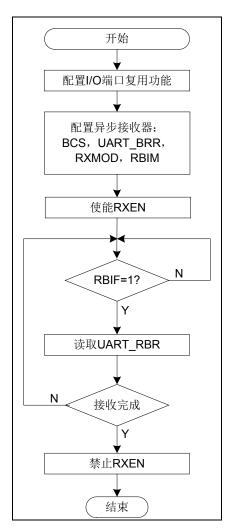


图 5-148 UARTO 接收数据操作流程图示例

V1.5 162/352

5. 2. 6 UART发送调制功能

发送调制模式是将 UART 传输到发送端口的信号电平,由 T16N 产生的 PWM 信号源或 BUZ 信号进行调制后,再从发送端口 TX0 输出。配置 TX0PS,可配置 UART 调制模式。配置 GPIO_TXPWM 寄存器的 TX0PLV,选择发送端口 TX0 被调制的信号电平。配置 TX0_S0、TX0_S1、TX0_S2 和 TX0_S3,使能调制信号输出到端口。

UART 调制功能使用的 PWM 信号源,由 T16N 或 BUZ 提供。配置 TX0PS,可选择与 TX0 输出端口进行调制的 PWM 信号源。

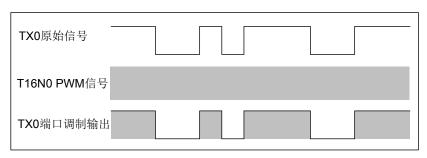


图 5-159 TX0 高电平调制输出波形图

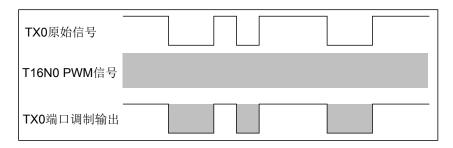


图 5-20 TX0 低电平调制输出波形图

5. 2. 7 UART红外唤醒功能

芯片支持 UART 接收端口的红外唤醒功能,需要通过软件控制实现。使能 UART 接收复用端口 RXO 的外部端口中断 PINT 功能,通过端口的 PINT 中断实现芯片的红外唤醒功能。对中断和唤醒的具体控制操作,可参考外部端口中断和浅睡眠模式,唤醒模式的相关章节描述。

5.2.8 UART端口极性

配置 UART_CON0 寄存器 TXP 和 RXP,可分别选择发送端口 TX0 和接收端口 RX0 的正负极性。选择为正极性时,UART 端口数据与传输的数据一致;选择为负极性时,UART端口数据与传输的数据相反。

5. 2. 9 UART自动波特率检测

接收数据时,配置 UART_CON0 寄存器的 BDEN 可使能自动波特率检测功能,配置 UART_CON1 寄存器的 BDM 可选择自动波特率检测的模式。UART_CON1 寄存器中

BDM<1:0>=00,选择模式 1,接收数据流需以二进制 1 开始(即接收数据的最低位为 1B), UART 检测起始位波特率;

BDM<1:0>=01,选择模式 2,接收数据流需以二进制 10 开始(即接收数据的最低两位为 01B),UART 检测起始位和数据第一位波特率;

BDM<1:0>=10,选择模式 3,接收数据流需以二进制 1111_1110 开始(即接收第一帧数据为 $7F_H$),UART 检测起始位及前 7 个数据位波特率;

BDM<1:0>=11,选择模式 4,接收数据流需以二进制 1010_1010 开始(即接收第一帧数据为 55_H),UART 检测起始位及前 7 个数据位波特率。

检测完成后,硬件自动清除 BDEN 关闭自动波特率检测功能。若检测成功将更新波特率寄存器 UART_BRR,并将这一帧数据写入接收缓冲器中,用户可从接收缓冲器中读取该数据,若检测超时,将置起 UART_IF 寄存器的波特率检测错误中断标志 BDEIF=1,但波特率寄存器将不会被更新,接收缓冲器不会写入新的数据。

若接收的数据格式为7位数据或者7位数据之后的校验位不固定为0时,模式3和模式4 将不适用,必须选择模式1和模式2。其它接收的数据格式只要满足各模式起始字符,即可任意配置。

自动波特率检测不受初始配置的波特率值影响,但需要根据应用条件,配置合适的波特率时钟预分频选择位 BCS。

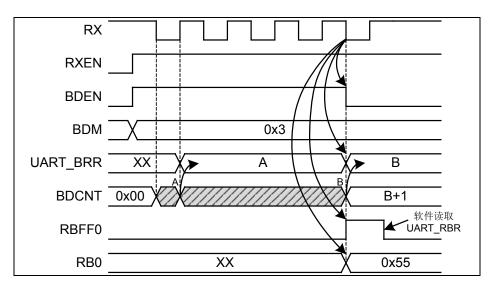


图 5-161 自动波特率检测时序示意图

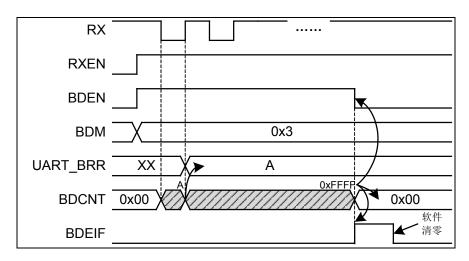


图 5-172 自动波特率检测错误时序示意图

5. 2. 10 UART空闲帧检测

接收数据时,配置 UART_CONO 寄存器的 IDEN 可使能空闲帧检测功能,配置 UART CON1 寄存器的 IDM 可选择空闲帧检测的模式。

IDM<1:0>=00,将检测连续10个比特位空闲;

IDM<1:0>=01,将检测连续11个比特位空闲;

IDM<1:0>=10,将检测连续12个比特位空闲;

IDM<1:0>=11,将检测连续13个比特位空闲。

当检测到空闲帧后,将置起 UART_IF 寄存器的接收空闲帧中断标志位 IDIF=1。硬件在接收到数据之后才会触发空闲帧检测,使能空闲帧检测功能后若接收数据线始终为空闲,则不会影响接收空闲帧中断标志位。

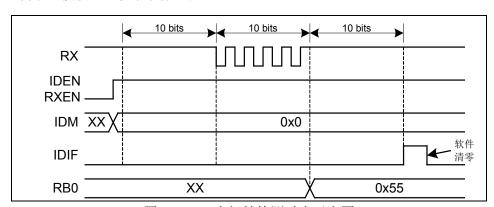


图 5-183 空闲帧检测时序示意图

5. 2. 11 UART发送暂停和接收暂停

配置 TXI 可暂停发送数据, TX0 端口将相应为空闲电平, 发送缓冲器中的数据将保持不变。 若此时正在发送数据, 则待当前帧数据发送完成后才会被暂停。

配置 RXI 可暂停接收数据,接收缓冲器中的数据将保持不变。若此时正在接收数据,则该一帧数据将被丢弃,不会写入接收缓冲器中。接收被暂停后,不会影响接收数据的校验位 判断和接收空闲帧检测。

5. 2. 12 特殊功能寄存器

UART 控制寄存器 0(UART_CON0)

偏移地址: 00_H

复位值: 00000000_00000000_000000000B

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	保	留	RXP	RXMOD<3:0>			保留		IDEN	BDEN	RXI	RBCLR	RRST	RXEN	
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
货	留	TXFS	TXP		ГХМОІ	D<3:0	>			保留		TXI	TBCLR	TRST	TXEN

_	bit31-29	_	_
			接收端口极性选择位
RXP	bit28	R/W	0:正极性(标准 UART 极性)
			1: 负极性(反向 UART 极性)
			接收数据格式选择位
			0000: 8 位数据
			0010: 9位数据
			0100: 7位数据
			1000: 8 位数据+偶校验位
			1001: 8 位数据+奇校验位
RXMOD<3:0>	bit27-24	R/W	1010: 8 位数据+固定 0
			1011: 8 位数据+固定 1
			1100: 7 位数据+偶校验位
			1101: 7 位数据+奇校验位
			1110: 7 位数据+固定 0
			1111:7位数据+固定1
			其他: 未用
_	bit23-22		_
			空闲帧检测使能位
IDEN	bit21	R/W	0: 禁止
			1: 使能
			自动波特率检测使能位
BDEN	bit20	R/W	0: 禁止
			1. 使能
			接收暂停功能使能位
RXI	bit19	R/W	0: 禁止
			1: 使能
			接收缓冲器清除
RBCLR	bit18	W	0: 读取时始终为0
			1: 清除接收缓冲器
			接收器软件复位
RRST	bit17	W	0: 读取时始终为0
			1: 软件复位

			接收使能位
RXEN	bit16	R/W	0: 禁止
TO CEIV	Sit 10	1011	1: 使能
_	bit15-14	_	
	Dicto 11		发送帧停止位选择位
TXFS	bit13	R/W	0: 1位停止位
1741 0	Dit 10	1011	1: 2位停止位
			发送端口极性选择位
TXP	bit12	R/W	0: 正极性 (标准 UART 极性)
174	Dit 12	1011	1: 负极性 (反向 UART 极性)
			发送数据格式选择位
			0000: 8位数据
			0010: 9位数据
			0100: 7位数据
			1000: 8 位数据+偶校验位
			1001: 8 位数据+奇校验位
TXMOD<3:0>	bit11-8	R/W	1010: 8 位数据+固定 0
			1011: 8 位数据+固定 1
			1100: 7 位数据+偶校验位
			1101:7位数据+奇校验位
			1110: 7位数据+固定 0
			1111: 7位数据+固定 1
			其他: 未用
_	bit7-4	_	_
			发送暂停功能使能位
TXI	bit3	R/W	0: 禁止
			1: 使能
			发送缓冲器清除
TBCLR	bit2	W	0: 读取时始终为0
			1: 清除发送缓冲器
			发送器软件复位
TRST	bit1	W	0: 读取时始终为0
			1: 软件复位
			发送使能位
TXEN	bit0	R/W	0: 禁止
			1: 使能

UART 控制寄存器 1(UART_CON1)

偏移地址: 04_H

复位值: 00000000_00000000_00000000_000000000B

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
			保留									IDM<	<1:0>		
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
保	留	BDM·	<1:0>	保留	Е	BCS<2:0>		保留		RBIM<1:0>		保留		TBIM	<1:0>

	bit31-18	_	I_
_	DIG 1-10		
			空闲帧检测模式选择位
IDM 44.05	h::47 40	D 44/	00: 连续 10 个比特空闲
IDM<1:0>	bit17-16	R/W	01: 连续 11 个比特空闲
			10: 连续 12 个比特空闲
			11: 连续 13 个比特空闲
_	bit15-14		
			自动波特率模式选择位
			00: 模式 1
BDM<1:0>	bit13-12	R/W	01: 模式 2
			10: 模式 3
			11: 模式 4
	bit11		_
			波特率时钟预分频选择位
		R/W	000: 波特率时钟关闭
BCS<2:0>	bit10-8		001: PCLK
DCG\2.0>			010: PCLK/2
			011: PCLK/4
			1xx: PCLK/8
_	bit7-6	_	_
			接收缓冲满中断模式选择位
			00: 字节满产生中断(缓冲器数据多于1个字节)
RBIM<1:0>	bit5-4	R/W	01: 半字满产生中断(缓冲器数据多于2个字节)
			10:字满产生中断(缓冲器数据多于4个字节)
			11: 全满产生中断(缓冲器数据满)
_	bit3-2		_
			发送缓冲空中断模式选择位
			00: 字节空产生中断(缓冲器 1 个字节以上为空)
TBIM<1:0>	bit1-0	R/W	01: 半字空产生中断(缓冲器 2 个字节以上为空)
			10: 字空产生中断(缓冲器 4 个字节以上为空)
			11: 全空产生中断(缓冲器全部为空)
			···/ / / / / / /

注 1: UART_CON1 寄存器中 BDM 模式操作方式如下:

模式 1:数据流以二进制 1 开始(即接收数据的最低位为 1B),检测起始位波特率;

模式 2: 数据流以二进制 10 开始(即接收数据的最低两位为 01B),检测起始位及数据第一位波特率;

模式 3: 数据流以二进制 1111_1110 开始(即接收数据 7FH), 检测起始位及前 7 个数据位;

模式 4: 数据流以二进制 1010_1010 开始(即接收数据 55_H), 检测起始位及前 7 个数据位。

注 2: 若接收的数据的格式为 7 位数据或者 7 位数据之后的校验位不固定为 0 时,模式 3 和模式 4 将不适用,必须选择模式 1 和模式 2。其他接收数据格式只要满足各模式起始字符,可任意配置。

UART 波特率寄存器(UART_BRR)

偏移地址: 10_H

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
保留															
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	BRINT<11:0>										BRFRA	4<3:0>			

_	bit31-16		_
BRINT<11:0>	bit15-4	R/W	传输波特率整数位
BRFRA<3:0>	bit3-0	R/W	传输波特率小数位

注 1: 当 UART_BRR 表示为 16 位无符号数,其中 4 位小数位,12 位整数位,其数值表示的是 UART 波特率分频数。例如:0x0104(十进制为 260)则表示为分频数 BRRDIV=260/16=16.25;0x0156(十进制为 342)则表示为分频数 BRRDIV=342/16=21.375。

注 2: 当 UART BRR 表示的波特率分频数小于 1.0 时,则硬件固定为 BRRDIV=1.0。

注 3: UART 传输波特率计算公式如下:

$$BAUD = \frac{Fpclk}{16 \times n \times BRRDIV}$$

其中 Fpclk 为系统时钟频率, n 为波特率时钟预分频数, 由 UART_CON1 寄存器中 BCS<2:0>决定

BCS<2:0>=001 时: n = 1; BCS<2:0>=010 时: n = 2; BCS<2:0>=011 时: n = 4; BCS<2:0>=1xx 时: n = 8。

UART 状态寄存器(UART_STA)

偏移地址: 14_H

复位值: 00000000_00000000_0000001_00000000B

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
			保留					PER3	FER3	PER2	FER2	PER1	FER1	PER0	FER0
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
任	保留	RXBUSY	RBOV	ı	RBPTF	R<3:0>	>	保	留	TXBUSY	TBOV		TBPTF	R<3:0>	

_	bit31-24	_	_
PER3	bit23	R	当前读取的 BYTE3 校验错误位 0: 正确 1: 错误

V1.5

169/352

			AND
			当前读取的 BYTE3 帧格式错误位
FER3	bit22	R	0: 正确
			1: 错误
			当前读取的 BYTE2 校验错误位
PER2	bit21	R	0: 正确
			1: 错误
			当前读取的 BYTE2 帧格式错误位
FER2	bit20	R	0: 正确
			1: 错误
			当前读取的 BYTE1 校验错误位
PER1	bit19	R	0: 正确
1 21(1	Bit10	'`	1: 错误
			当前读取的 BYTE1 帧格式错误位
FER1	bit18	R	1 1 1 1 1 1 1 1 1 1
FERI	טונוס	"	U: 止嗍 1: 错误
			N. A.
DEDA	L 114 7	_	当前读取的 BYTE0 校验错误位
PER0	bit17	R	0: 正确
			1: 错误
			当前读取的 BYTE0 帧格式错误位
FER0	bit16	R	0: 正确
			1: 错误
_	bit15-14	—	_
			接收状态位
RXBUSY	bit13	R	0:接收空闲
		<u>L</u>	1: 正在接收
			接收缓冲器溢出状态位
RBOV	bit12	R	0: 未溢出
			1: 溢出
			接收缓冲器中数据字节数
		_	0000: 0 字节
RBPTR<3:0>	bit11-8	R	
			1000: 8 字节
_	bit7-6	_	
	5.0		发送状态位
TXBUSY	bit5	R	0: 发送空闲
IADUST	טונט		0: 及医至内 1: 正在发送
TDOV	F:14		发送缓冲器溢出状态位
TBOV	bit4	R	0: 未溢出
		ļ	1: 溢出
			发送缓冲器中数据字节数
TBPTR<3:0>	bit3-0	R	0000: 0 字节
12. 11. 0.0		'`	•••••
			1000: 8 字节

UART 中断使能寄存器(UART_IE)

偏移地址: 18_H

复位值: 00000000_00000000_000000000_B

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
保	留	RBROIE	RBREIE	BDEIE	PEIE	FEIE	ROIE			保	:留			IDIE	RBIE
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
			保留			TBWOIE	TBWEIE			保	:留			TCIE	TBIE

		1	_
_	bit31-30	—	_
			读接收缓冲溢出中断使能位
RBROIE	bit29	R/W	0: 禁止
			1: 使能
			读接收缓冲错误中断使能位
RBREIE	bit28	R/W	0: 禁止
			1: 使能
			波特率检测错误中断使能位
BDEIE	bit27	R/W	0: 禁止
			1: 使能
			接收校验错误中断使能位
PEIE	bit26	R/W	0: 禁止
			1: 使能
			接收帧错误中断使能位
FEIE	bit25	R/W	0: 禁止
			1: 使能
			接收数据溢出中断使能位
ROIE	bit24	R/W	0: 禁止
			1: 使能
_	bit23-18	_	_
			接收空闲帧中断使能位
IDIE	bit17	R/W	0: 禁止
			1. 使能
			接收缓冲器满中断使能位
RBIE	bit16	R/W	0: 禁止
			1: 使能
_	bit15-10	_	_
			写发送缓冲溢出中断使能位
TBWOIE	bit9	R/W	0: 禁止
			1: 使能
			写发送缓冲错误中断使能位
TBWEIE	bit8	R/W	0: 禁止
			1: 使能
_	bit7-2	_	
		J.	

TCIE	bit1	R/W	发送完成中断使能位 0: 禁止
			1: 使能 发送缓冲器空中断使能位
TBIE	bit0	R/W	0: 禁止 1: 使能

UART 中断标志寄存器(UART_IF)

偏移地址: 1C_H

复位值: 00000000_00000000_00000001_B

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
f	呆留	RBROIF	RBREIF	BDEIF	PEIF	FEIF	ROIF			保	留			IDIF	RBIF
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
			保留			TBWOIF	TBWEIF			保	留			TCIF	TBIF

	bit31-30		
	DII3 1-30		读接收缓冲溢出中断标志位
RBROIF	bit29	R/W	0: 读接收缓冲未溢出
RBRUIF	DILZ9	R/VV	1: 读接收缓冲溢出
			软件写 1 清除标志位,写 0 无效
			读接收缓冲错误中断标志位
RBREIF	bit28	R/W	0: 读接收缓冲未错误
I NONE!!	DILEO	1000	1: 读接收缓冲错误
			软件写 1 清除标志位,写 0 无效
			波特率检测错误中断标志位
BDEIF	bit27	R/W	0: 波特率检测未错误
BBEII	DILE?	1000	1: 波特率检测错误
			软件写 1 清除标志位,写 0 无效
	bit26		接收校验错误中断标志位
PEIF		R/W	0:接收校验正常
PEIF	DILZO	FK/VV	1:接收校验错误
			软件写 1 清除标志位,写 0 无效
			接收帧错误中断标志位
FEIF	bit25	R/W	0:接收帧正常
FEIF	DILZS	I R/VV	1: 接收帧错误
			软件写 1 清除标志位,写 0 无效
			接收数据溢出中断标志位
DOLE	P:104	D 447	0: 未溢出
ROIF	bit24	R/W	1: 溢出
			软件写 1 清除标志位,写 0 无效
_	bit23-18	_	_
IDIF	bit17	R/W	接收空闲帧中断标志位

V1.5 172/352

	1		
			0: 未接收到空闲帧
			1:接收到空闲帧
			软件写 1 清除标志位,写 0 无效
			接收缓冲器满中断标志位
RBIF	bit16	R	0: 非满
KDIF	DILTO	K	1:满(满足 RBIM 所选择的条件)
			读 UART_RBR 寄存器可清除标志位
_	bit15-10	_	_
			写发送缓冲溢出中断标志位
TDWOIF	P:10	R/W	0: 写发送缓冲未溢出
TBWOIF	bit9	R/VV	1: 写发送缓冲溢出
			软件写 1 清除标志位,写 0 无效
			写发送缓冲错误中断标志位
TOWELE	1.110	R/W	0: 写发送缓冲未错误
TBWEIF	bit8		1: 写发送缓冲错误
			软件写 1 清除标志位,写 0 无效
	bit7-2	_	_
			发送完成中断标志位
			0: 发送未完成
TCIF	bit1	R/W	1: 发送已完成
			软件写 1 清除标志位,写 0 无效
			发送缓冲器空中断标志位
		_	0: 非空
TBIF	bit0	R	1: 空 (满足 TBIM 所选择的条件)
			写 UART TBW 寄存器可清除标志位

- 注 1: UART 中断禁止时,如果满足条件仍会置起对应的中断标志位,只是不会产生中断请求。
- 注 2: 对 UART_IF 寄存器中的各中断标志位,写 0 无效,写 1 才能清除标志位;读操作时,读取的值为 1 表示有中断发生。

UART 发送数据写入寄存器(UART_TBW)

偏移地址: 20_H

复位值	复位值: XXXXXXXX_XXXXXXXXXXXXXXXXXXXXXXXXXXXX														
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							TBW<	31:16>							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
							TBW	<15:0>							

			写入的发送数据
TBW<31:0>	hit21 0	W	字节写入时:仅允许对 UART_TBW<7:0>写入
1600-31.02	bit31-0	l vv	半字写入时:仅允许对 UART_TBW<15:0>写入
			字写入时:对 UART_TBW<31:0>写入

V1.5 173/352

UART 接收数据读取寄存器(UART	DDD)
UAKI 佐收 剱 佐採以 食仔卷(UAKI	KBK)

偏移地址: 24_H

RBR<31:16> 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
		- 30			LI								10	10	- 17	10
	15	1.1	10	10	44	10		0	7	6	-	4	2	2	4	
RBR<15:0>	15	14	13	12	111	10	9		145.05	О	5	4	3		1	0

			读取的接收数据
RBR<31:0>	bit31-0	R	字节读取时: 仅允许对 UART_RBR<7:0>读取
11.011.05	DITO 1 0		半字读取时:仅允许对 UART_RBR<15:0>读取
			字读取时:对 UART_RBR<31:0>读取

UART 发送缓冲寄存器 0(UART_TB0)

偏移地址: 40_H

复位值: 00000000_00000000_00000000_00000000_B

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							保旨	留							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
保	留	TBFF0	TP0		保留						TB0<8:0	>			

_	bit31-14		_
			发送缓冲器 0 空满标志位
TBFF0	bit13	R	0: 空
			1: 满
TDO	h:#40	В	发送的奇偶校验位
TP0	bit12	R	发送缓冲器 0 对应的奇偶校验位
_	bit11-9	_	_
TB0<8:0>	bit8-0	R	发送缓冲器 0 数据

UART 发送缓冲寄存器 1(UART_TB1)

偏移地址: 44H

复位值: 00000000_00000000_00000000_00000000_B

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							保旨	留							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

_	bit31-14	_	_
TBFF1	bit13	R	发送缓冲器 1 空满标志位

			0: 空 1: 满
TP1	bit12	R	发送的奇偶校验位 发送缓冲器 1 对应的奇偶校验位
_	bit11-9	_	_
TB1<8:0>	bit8-0	R	发送缓冲器 1 数据

UART 发送缓冲寄存器 2(U	ΔRT	TR2)
UARIX外级工能作储工(U	A I	104/

偏移地址: 48_H

复位值: 00000000_00000000_00000000_00000000_B

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							保	韶							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

_	bit31-14	_	_
			发送缓冲器 2 空满标志位
TBFF2	bit13	R	0: 空
			1: 满
TP2	hit10	В	发送的奇偶校验位
172	bit12	R	发送缓冲器 2 对应的奇偶校验位
_	bit11-9	_	_
TB2<8:0>	bit8-0	R	发送缓冲器 2 数据

UART 发送缓冲寄存器 3(UART_TB3)

偏移地址: 4C_H

复位值: 00000000_00000000_00000000_00000000B

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							保旨	蛪							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
保	:留	TBFF3	TP3		保留						TB3<8:0	>			

_	bit31-14	_	_
			发送缓冲器 3 空满标志位
TBFF3	bit13	R	0: 空
			1: 满
TD2	hit10	В	发送的奇偶校验位
TP3	bit12	R	发送缓冲器 3 对应的奇偶校验位
_	bit11-9	_	_
TB3<8:0>	bit8-0	R	发送缓冲器 3 数据

UART 发送缓冲寄存器 4(UART TB4)	UART	关缓冲寄存器 4	(UART	TB4)
--------------------------	------	----------	-------	------

偏移地址: 50_H

复位值: 00000000_00000000_00000000_000000000B

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							保	留							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	保留	TBFF4	TP4		保留						TB4<8:0	>			

_	bit31-14	_	_
			发送缓冲器 4 空满标志位
TBFF4	bit13	R	0: 空
			1: 满
TP4	hit40	В	发送的奇偶校验位
174	bit12	R	发送缓冲器 4 对应的奇偶校验位
_	bit11-9	_	_
TB4<8:0>	bit8-0	R	发送缓冲器 4 数据

UART 发送缓冲寄存器 5(UART_TB5)

偏移地址: 54_H

复位值: 00000000_00000000_00000000_00000000B

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							保	蛪							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
保	留	TBFF5	TP5		保留						TB5<8:0	>			

_	bit31-14	_	_
			发送缓冲器 5 空满标志位
TBFF5	bit13	R	0: 空
			1: 满
TDE	h:#4.0		发送的奇偶校验位
TP5	bit12	R	发送缓冲器 5 对应的奇偶校验位
_	bit11-9	_	_
TB5<8:0>	bit8-0	R	发送缓冲器 5 数据

UART 发送缓冲寄存器 6(UART_TB6)

偏移地址: 58_H

复位值: 00000000_00000000_00000000_00000000B

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							保旨	留							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
保	留	TBFF6	TP6		保留						TB6<8:0	>			

_	bit31-14	_	_
			发送缓冲器 6 空满标志位
TBFF6	bit13	R	0: 空
			1: 满
TDe	hit10	В	发送的奇偶校验位
TP6	bit12	R	发送缓冲器 6 对应的奇偶校验位
_	bit11-9	_	_
TB6<8:0>	bit8-0	R	发送缓冲器 6 数据

UART	发送缓冲寄存器 7	(UART TB7)

偏移地址: 5C_H

复位值: 00000000_00000000_000000000_B

 31
 30
 29
 28
 27
 26
 25
 24
 23
 22
 21
 20
 19
 18
 17
 16

 15
 14
 13
 12
 11
 10
 9
 8
 7
 6
 5
 4
 3
 2
 1
 0

 保留
 TBFF7
 TP7
 保留
 TB7<</td>
 TB7
 TB7
 TB7

_	bit31-14	_	_
			发送缓冲器 7 空满标志位
TBFF7	bit13	R	0: 空
			1: 满
TDZ	h:#40	0	发送的奇偶校验位
TP7	bit12	R	发送缓冲器7对应的奇偶校验位
_	bit11-9	_	_
TB7<8:0>	bit8-0	R	发送缓冲器7数据

UART 接收缓冲寄存器 0(UART_RB0)

偏移地址: 60_H

复位值: 00000000_00000000_000000000_B

保留

PE0 FE0 RBFF0 RP0 保留 RB0<8:0>

_	bit31-16	_	_
			接收缓冲器 0 数据校验错误标志位
PE0	bit15	R	0: 正确
			1: 错误
EEO	hit11	D	接收缓冲器 0 数据帧错误标志位
FE0	bit14	R	0: 正确

V1.5 177/352

			1: 错误
			接收缓冲器 0 空满标志位
RBFF0	bit13	R	0: 空
			1: 满
DDO	h:#40	В	接收的奇偶校验位
RP0	bit12	R	接收缓冲器 0 对应的奇偶校验位
_	bit11-9	_	_
RB0<8:0>	bit8-0	R	接收缓冲器 0 数据

UART 接收缓冲寄存器 1(UART_RB1)

偏移地址: 64_H

复位值: 00000000_00000000_00000000_B

保留

 15
 14
 13
 12
 11
 10
 9
 8
 7
 6
 5
 4
 3
 2
 1
 0

 PE1
 FE1
 RBFF1
 RP1
 RB
 RB1<8:0>

_	bit31-16	_	_
			接收缓冲器 1 数据校验错误标志位
PE1	bit15	R	0: 正确
			1: 错误
			接收缓冲器 1 数据帧错误标志位
FE1	bit14	R	0: 正确
			1: 错误
			接收缓冲器 1 空满标志位
RBFF1	bit13	R	0: 空
			1: 满
RP1	hit10	R	接收的奇偶校验位
RPI	bit12	K	接收缓冲器 1 对应的奇偶校验位
_	bit11-9	_	_
RB1<8:0>	bit8-0	R	接收缓冲器 1 数据

UART 接收缓冲寄存器 2(UART_RB2)

偏移地址: 68_H

复位值: 00000000_00000000_00000000_00000000_B

保留

PE2 FE2 RBFF2 RP2 保留 RB2<8:0>

V1.5 178/352

_	bit31-16	_	_
			接收缓冲器 2 数据校验错误标志位
PE2	bit15	R	0: 正确
			1: 错误
			接收缓冲器 2 数据帧错误标志位
FE2	bit14	R	0: 正确
			1: 错误
			接收缓冲器 2 空满标志位
RBFF2	bit13	R	0: 空
			1: 满
RP2	bit12	R	接收的奇偶校验位
RF2	DILIZ	K	接收缓冲器 2 对应的奇偶校验位
_	bit11-9	_	_
RB2<8:0>	bit8-0	R	接收缓冲器 2 数据

UART 接收缓冲寄存器 3(UART_RB3)

偏移地址: 6CH

复位值: 00000000_00000000_000000000_B

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							保留								
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
PE3	FE3	RBFF3	RP3		保留					F	RB3<8:0	>			

_	bit31-16		_
			接收缓冲器 3 数据校验错误标志位
PE3	bit15	R	0: 正确
			1: 错误
			接收缓冲器 3 数据帧错误标志位
FE3	bit14	R	0: 正确
			1: 错误
			接收缓冲器 3 空满标志位
RBFF3	bit13	R	0: 空
			1: 满
RP3	bit12	R	接收的奇偶校验位
KF3	DILIZ	K	接收缓冲器 3 对应的奇偶校验位
_	bit11-9		_
RB3<8:0>	bit8-0	R	接收缓冲器 3 数据

V1.5 179/352

UART 接收缓冲寄存器 4(UART_RB4)

偏移地址: 70_H

复位值: 00000000_00000000_00000000_000000000B

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							保留								
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
PE4	FE4	RBFF4	RP4		保留					F	RB4<8:0	>			

_	bit31-16		_
			接收缓冲器 4 数据校验错误标志位
PE4	bit15	R	0: 正确
			1: 错误
			接收缓冲器 4 数据帧错误标志位
FE4	bit14	R	0: 正确
			1: 错误
			接收缓冲器 4 空满标志位
RBFF4	bit13	R	0: 空
			1: 满
RP4	bit12	R	接收的奇偶校验位
1\174	DILIZ		接收缓冲器 4 对应的奇偶校验位
	bit11-9	_	_
RB4<8:0>	bit8-0	R	接收缓冲器 4 数据

UART 接收缓冲寄存器 5(UART_RB5)

偏移地址: 74_H

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							保留								

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
PE5	FE5	RBFF5	RP5		保留					F	RB5<8:0	>			

_	bit31-16	_	_
			接收缓冲器 5 数据校验错误标志位
PE5	bit15	R	0: 正确
			1: 错误
			接收缓冲器 5 数据帧错误标志位
FE5	bit14	R	0: 正确
			1: 错误
			接收缓冲器 5 空满标志位
RBFF5	bit13	R	0: 空
			1: 满

RP5	RP5 Dif12 R		接收的奇偶校验位 接收缓冲器 5 对应的奇偶校验位
_	bit11-9	_	_
RB5<8:0>	bit8-0	R	接收缓冲器 5 数据

UART 接收缓冲寄存器 6(UART_RB6)

偏移地址: 78_H

复位值:	复位值: 00000000_00000000_000000000B														
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16														16	
	保留														
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
PE6	FE6	RBFF6	RP6		保留		RB6<8:0>								

_	bit31-16		_
			接收缓冲器 6 数据校验错误标志位
PE6	bit15	R	0: 正确
			1: 错误
			接收缓冲器 6 数据帧错误标志位
FE6	bit14	R	0: 正确
			1: 错误
			接收缓冲器 6 空满标志位
RBFF6	bit13	R	0: 空
			1: 满
RP6	bit12	R	接收的奇偶校验位
KFU	DILIZ	K	接收缓冲器 6 对应的奇偶校验位
_	bit11-9		_
RB6<8:0>	bit8-0	R	接收缓冲器 6 数据

UART 接收缓冲寄存器 7(UART_RB7)

偏移地址: 7CH

/m/3/24/24	10 p 2 p 2 p 2 p 2 p 2 p 2 p 2 p 2 p 2 p														
复位值:	复位值: 00000000_00000000_000000000 _B														
31	31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16														
	保留														
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
PE7	FE7	RBFF7	RP7		保留			RB7<8:0>							

_	bit31-16	_	_
PE7	bit15	R	接收缓冲器 7 数据校验错误标志位 0:正确 1:错误

V1.5 181/352

FE7	bit14	R	接收缓冲器 7 数据帧错误标志位 0:正确 1:错误
RBFF7	bit13	R	接收缓冲器 7 空满标志位 0: 空 1: 满
RP7	bit12	R	接收的奇偶校验位 接收缓冲器 7 对应的奇偶校验位
_	bit11-9	_	_
RB7<8:0>	bit8-0	R	接收缓冲器 7 数据

5. 2. 13 UART应用说明

芯片支持2个通用异步接收/发送器为UART0,UART1。

UART 的发送脉宽调制模式,使用 T16N 或 BUZ 产生的 PWM 脉冲进行调制,然后通过 TX0/TX1 端口输出调制后的信号,与 PWM 脉冲本身是否通过 T16N 输出端口 0 和 T16N 输出端口 1 或 BUZ 端口输出无关,所以对 T16N 或 BUZ 的输出调制模式,即使芯片不支持其 I/O 端口复用功能,仍可以在正确配置后,产生 PWM 脉冲分别对 TX0,TX1 输出端口的信号进行调制。

5.3 增强型通用异步接收/发送器(EUARTO)

5.3.1 概述

- ◇ 配置为普通 UART 模式,与 UART 功能完全兼容
- ◇ 配置为 7816 模式, 支持 7816 通讯协议
- ◇ 支持异步接收器/发送器
- ◇ 支持半双工通讯模式
- ◇ 支持8位数据位和1位奇偶校验位数据传输格式
- ◇ 支持自动重发重收功能
- ◇ 支持可配置内部时钟输出
- ◇ 支持双通道通讯可配置

5.3.2 结构框图

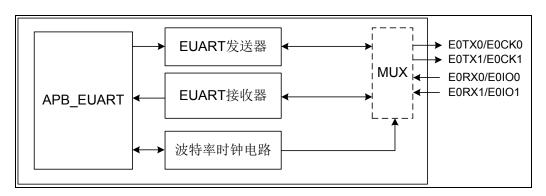


图 5-194 EUART0 电路结构框图

5.3.3 EUART端口复用

EUART 复用端口	普通 UART 模式	7816 模式
E0TX0/E0CK0	E0TX0	E0CK0
E0TX1/E0CK1	E0TX1	E0CK1
E0RX0/E0IO0	E0RX0	E0IO0
E0RX1/E0IO1	E0RX1	E0IO1

配置相应 I/O 端口的复用功能为 EUART 通讯端口复用功能。EUART_CON2 寄存器中

配置 MOD=0,选择普通 UART 模式,通讯端口的复用功能为 E0TX0/E0TX1 和 E0RX0/E0RX1。

配置 MOD=1,选择 7816 模式,通讯端口的复用功能为 E0CK0/E0CK1 和 E0IO0/E0IO1。

EUART 模块支持两个独立的内部时钟输出端口(E0CK0 和 E0CK1)。配置 CK0E/CK1E,可使能 E0CK0/E0CK1 时钟端口,输出芯片内部时钟,配置 CKS<1:0>,可选择输出的时钟源。

EUART 模块支持两个数据端口(E0IO0 和 E0IO1),这两个数据端口可分时复用,构成通讯双通道。配置 CHS,可选择通讯时使用的 E0IO0/E0IO1 数据端口。

5.3.4 普通UART通讯模式

EUART 模块配置为普通 UART 通讯模式后,除不支持发送脉宽调制外,其它功能与 UART 模块一致,可参考与前面章节的相关内容,此处不再描述。

5.3.5 7816 通讯模式的异步接收器和发送器

7816 模式为半双工通讯方式,该模式下 EUART_CON0 寄存器中 RXEN 与 TXEN 使能位无效,由 EUART_CON2 寄存器的 IOC 端口方向控制位交替使能接收器和发送器,并发送或接收 ACK 应答信号,同时控制 E0IO0/E0IO1 端口的输入输出状态。

配置 IOC=1, EUART 发送数据,接收 ACK 应答信号。发送数据时,依次发送起始位(1bit),数据位(8bit,先发低位,后发高位),校验位(1bit);然后接收 ACK 应答信号。当对连续两帧数据进行背靠背发送时,两帧数据间的间隔必须大于一定的时间,该时间称为保护时间,由通讯双方事先约定。配置 EUART_CON2 寄存器的 ETUS<7:0>,可选择保护时间。每帧数据发送完成后,EUART 均会接收应答信号。EUART_CON2 寄存器中读取RNACK,可判断是否接收到 ACK 应答信号,其中 1为 ACK,0为 NACK。如果在保护时间内未接收到应答信号,还会置起 NACK 中断标志 RNAIF。

配置 IOC=0,EUART 接收数据,发送 ACK 应答信号。接收数据时,先等待起始位,再依次接收数据位(8bit,先收低位,后收高位),校验位(1bit);然后判断校验位是否正确,正确则发送 ACK 应答,否则发送 NACK,其中 ACK=1,NACK=0。配置 TNAS<1:0>,可选择 NACK 电平的宽度。

配置 PS,可选择数据的奇偶校验方式。发送时,硬件电路自动计算发送数据的奇偶校验位并发送。接收时,硬件电路自动对接收的数据进行奇偶校验,如果校验错误,会置起 EUART_IF 寄存器的奇偶校验错误中断标志 PEIF。

支持 4 级发送缓冲器 TB0, TB1, TB2, TB3 和 1 级发送移位寄存器。发送缓冲器 TB0~TB4 为只读寄存器,只能通过发送数据寄存器 EUART_TBW 写入。

对异步发送器,数据从写入到发送到端口的数据流示意图如下所示:

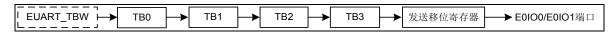


图 5-205 7816 通讯模式发送数据流示意图

支持 4 级接收缓冲器 RB0, RB1, RB2, RB3 和 1 级接收移位寄存器。可通过读取接收数据寄存器 EUART_RBR, 得到接收的数据。

对异步接收器,数据从接收端口到各级缓冲器的数据流示意图如下所示:

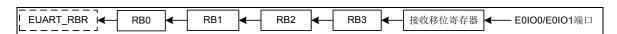


图 5-216 7816 通讯模式接收数据流示意图

配置 EUART_CON2 寄存器的 ERST,可将 7816 通讯模块软件复位,复位后:禁止数据 传输 EUART CON0 寄存器中 TXEN=0, RXEN=0; EUART IE 寄存器中禁止各中断

V1.5 184/352

TBIE=0,TBWEIE=0,RBIE=0,ROIE=0,FEIE=0,PEIE=0,RNAIE=0;EUART_IF 寄存器中复位相关中断标志为默认值 TBIF=1,BWEIF=0,RBIF=0,ROIF=0,FEIF=0,PEIF=0,RNAIF=0;清除发送状态标志 TXBUSY=0,清除接收状态标志 RXBUSY=0;置起各发送缓冲器空标志 TBEF0~TBEF3=1;清除各接收缓冲器满标志 RBFF0~RBFF3=0;清除各接收缓冲器错误标志 FE0~FE3=0,PE0~PE3=0。

5. 3. 6 7816 通讯模式的数据格式

7816 模式通讯数据帧为 8 位数据位和 1 位奇偶校验位,支持两种数据传输格式,正向约定数据格式和反向约定数据格式。

配置 EUART_CON2 寄存器的 DAS=0,选择正向约定数据格式。实际发送的数据与写入到寄存器 EUART TBW 的数据一致。

举例说明正向约定数据格式:以字节方式向 EUART_TBW 写入数据 0x50,传输到发送移位寄存器的值为 0x50,并对 0x50 计算奇偶校验位,E0IO0/E0IO1 端口发送的数据序列依次为"0(起始位)+00001010+校验位"。同理,如果 E0IO0/E0IO1 端口收到的数据是 0x50,则读取寄存器 EUART_RBR,得到的数据为 0x50。

配置 EUART_CON2 寄存器的 DAS=1,选择反向约定数据格式。实际发送的数据,是将写入到寄存器 EUART TBW 的数据,先高低位互换再取反后的数据。

举例说明反向约定数据格式: 以字节方式向 EUART_TBW 写入数据 0x50,二进制格式为 01010000,高低位互换后为 00001010,再取反后为 11110101,所以传输到发送移位寄存器的值为 0xF5,并对 0xF5 计算奇偶校验位,E0IO0/E0IO1 端口发送的数据序列依次为 "0 (起始位)+10101111+校验位"。同理,如果 E0IO0/E0IO1 端口收到的数据是 0xF5 时,则读取寄存器 EUART RBR,得到的数据为 0x50。

5.3.7 7816 通讯模式的自动重发功能

7816 模式支持数据自动重发功能。

配置 EUART_CON2 寄存器的 ARTE=0,禁止自动重发,当收到 NACK(即应答信号电平为 0)时,置起 NACK 中断标志 RNAIF,且 RNACK=1,然后继续发送下一个数据帧,并在发送完成后,根据 ACK 的状态更新 RNACK 位,但中断标志 RNAIF 始终保持为 1,直到 EUART 软件复位或通过软件将该标志清零。

举例说明禁止自动重发时的数据传输过程:发送移位寄存器中的数据为 0x55,发送缓冲器 TB3 中的数据为 0xAA。如果数据 0x55 发送成功,收到 ACK 应答,则 NACK 中断标志 RNAIF=0,且 RNACK=0,然后继续发送数据 0xAA,并根据发送结果更新 RNAIF 和 RNACK;如果数据 0x55 发送失败,未收到 ACK 应答,则 NACK 中断标志 RNAIF=1,且 RNACK=1,然后继续发送数据 0xAA,并根据发送结果更新 RNACK,但无论数据 0xAA 发送成功与否,中断标志 RNAIF 均保持为 1。

配置 EUART_CON2 寄存器的 ARTE=1,使能自动重发,当收到 NACK(即应答信号电平为 0)时,自动重发前一帧数据,每次重发均会影响 RNACK,但不会影响 NACK 中断标志 RNAIF,配置 ARTS<1:0>,可选择重发的次数。在数据重发过程中,若某次重发后,收到 ACK(即应答信号电平为 1),则停止重发。若重发次数达到设置的上限后,数据发送依然失败,则停止重发,同时后续未发送的数据也被终止,置起自动重发失败中断标志

ARTEIF, 清除发送状态标志 TXBUSY。

举例说明使能自动重发时的数据传输过程:发送移位寄存器中的数据为 0x55,发送缓冲器 TB3 中的数据为 0xAA,重发次数为 2 次。如果数据 0x55 发送失败,则发送移位寄存器中的数据依然是 0xAA,NACK 中断标志 RNAIF=1,且 RNACK=1,ARTEIF=0,TXBUSY=1。然后重发第 1 次,如果收到 ACK 应答,则RNACK=0,RNAIF 仍保持为 1,ARTEIF=0,TXBUSY=1,并继续发送数据 0xAA;如果收到 NACK,则 RNACK=1,RNAIF 保持为 1,ARTEIF=0,TXBUSY=1,并重发第 2次。如果第 2次重发依然失败,则停止重发,RNACK=1,RNAIF 保持为 1,ARTEIF=1,TXBUSY=0,并不再继续发送数据 0xAA。

5.3.8 7816 通讯模式的自动重收功能

7816 模式支持数据自动重收功能。EUART_CON2 寄存器中

配置 ARRE=0,禁止自动重收,无论接收数据的奇偶校验值是否与校验位相符,均会在保护时间内发送 ACK(即应答信号电平为 1)。

配置 ARRE=1,使能自动重收,当接收数据的奇偶校验值与校验位不符时,会在保护时间内发送 NACK(即应答信号电平为 0)。如果发送方支持重发功能,在收到 NACK 后会重发前一帧数据。

5.3.9 特殊功能寄存器

EUART 控制寄存器 0(EUART_CON0)

偏移地址: 00_H

复位值: 00000000_00000000_00000000_B

31	3	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
		保留		RXP		RXMO	D<3:0>		保留					RBCLR	RRST	RXEN
15	1	14	13	12	11	10	9	8	7 6 5 4 3			3	2	1	0	
	保留		TXFS	TXP		TXMOI	D<3:0>		保留					TBCLR	TRST	TXEN

_	bit31-29	_	_
			接收端口极性选择
RXP	bit28	R/W	0:正极性(标准 UART 极性)
			1: 负极性(反向 UART 极性)
			接收数据格式选择位
			0000: 8 位数据
			0010:9位数据
			0100: 7位数据
DVMOD <2:0>	hit07 04	DAA	1000: 8 位数据+偶校验位
RXMOD<3:0>	bit27-24	R/W	1001: 8 位数据+奇校验位
			1010: 8 位数据+固定 0
			1011: 8 位数据+固定 1
			1100:7位数据+偶校验位
			1101: 7 位数据+奇校验位

		-	1110 - D M III III D
			1110: 7位数据+固定 0
			1111: 7 位数据+固定 1
			其他: 未用
_	bit23-19	_	—
			接收缓冲器清除
RBCLR	bit18	W	0: 读取时始终为0
			1: 清除接收缓冲器
			接收器软件复位
RRST	bit17	W	0: 读取时始终为0
			1: 软件复位
			接收使能位
RXEN	bit16	R/W	0: 禁止
			1: 使能
_	bit15-14	_	_
TXFS	bit13	R/W	0: 1 位停止位
1741 0	Sitto	1011	1: 2 位停止位
			发送端口极性选择
TXP	bit12	R/W	0: 正极性 (标准 UART 极性)
IXI	DICIZ	1 1 7 7 7	1: 负极性 (反向 UART 极性)
			发送数据格式选择位
			0000: 8 位数据
			0010: 9位数据
			0100: 7位数据
			1000: 8 位数据+偶校验位
			1001: 8 位数据+奇校验位
TXMOD<3:0>	bit11-8	R/W	1010: 8 位数据+固定 0
			1011: 8 位数据+固定 1
			1100: 7 位数据+偶校验位
			1101: 7 位数据+奇校验位
			1110: 7位数据+固定 0
			1111: 7 位数据+固定 1
			其他:未用
_	bit7-3	_	_
			发送缓冲器清除
TBCLR	bit2	W	0: 读取时始终为0
			1: 清除发送缓冲器
			发送器软件复位
TRST	bit1	W	0: 读取时始终为 0
			1: 软件复位
			发送使能位
TXEN	bit0	R/W	0: 禁止
	2.00		1: 使能
			· KIII

EUART 控制寄存器 1(EUART_CON1)

偏移地址: 04_H

复位值: 00000000_00000000_000000000B

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
						保	留							RXBUSY	TXBUSY
							_		_				_		

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
保留		В	3CS<2:0	>	保	留	RBIM	<1:0>	保	:留	TBIM	<1:0>			

_	bit31-18	_	_
RXBUSY	bit17	R	接收状态位 0:接收空闲
KADOST	TOOLOG SILLY		1: 正在接收
			发送状态位
TXBUSY	bit16	R	0: 发送空闲
			1: 正在发送
_	bit15-11	_	_
			波特率时钟预分频选择位
	bit10-8	R/W	000: 波特率时钟关闭
BCS<2:0>			001: PCLK
			010: PCLK/2
			011: PCLK/4
			1xx: PCLK/8
_	bit7-6	_	_
			接收缓冲满中断模式选择位
RBIM <1:0>	bit5-4	R/W	00: 字节满产生中断(缓冲器数据多于1个字节)
RDIIVI < 1.0>	บเอ-4	R/VV	01: 半字满产生中断 (缓冲器数据多于 2 个字节)
			1x: 全满产生中断(缓冲器数据 4 字节全满)
	bit3-2		_
			发送缓冲空中断模式选择位
TBIM<1:0>	bit1-0	R/W	00: 字节空产生中断(缓冲器 1 个字节以上为空)
I DIIVI \ I.U>	טונו-ט	K/W	01: 半字空产生中断 (缓冲器 2 个字节以上为空)
	_		1x: 全空产生中断(缓冲器 4 字节全部为空)

EUART 控制寄存器 2(EUART_CON2)

偏移地址: 08_H

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
仴	保留	TXFEND	RNACK		保留		BGTE				ET	US<7:0>			
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
CKS	<1:0>	ARTS	<1:0>	TNAS	<1:0>	ARRE	ARTE	PS	DAS	IOC	CHS	CK1E	CK0E	ERST	MOD

_	bit31-30	_	_
			发送停止位完成标志位
TXFEND	bit29	R	0: 未完成
			1: 发送完成
			接收 NACK 状态位
RNACK	bit28	R	0: 未收到
			1: 接收到
_	Bit27-25	_	_
			数据块保护时间使能位(22ETU)
BGTE	bit24	R/W	0: 禁止
			1: 使能
			ETU 保护时间选择位
	bit23-16		0: 2个ETU时间
ETUS<7:0>		R/W	1: 3个ETU时间
			255: 257 个 ETU 时间
			ECK 输出时钟源选择位
			00: UBC
CKS<1:0>	bit15-14	R/W	01: UBC/2
			10: UBC/4
			11: UBC/8
		R/W	自动重发次数选择位
			00: 重发 1 次
ARTS<1:0>	bit13-12		01: 最多重发 2 次
			10: 最多重发 3 次
			11: 连续重发,直到数据发送正确为止
			发送 NACK 信号宽度的选择位
TNAS<1:0>	bit11-10	R/W	00: 1个ETU
TNA5<1.0>	DICTT-10	F7/VV	01: 1.5 个 ETU
			1x: 2个ETU
			自动重收使能位
ARRE	bit9	R/W	0: 禁止
			1: 使能
ADTE	bi+0	DAA/	自动重发使能位
ARTE	bit8	R/W	0: 禁止

			1. 使能
			奇偶校验选择位
PS	bit7	R/W	0: 奇校验
			1: 偶校验
			数据格式选择位
DAS	bit6	R/W	0: 正向约定
			1: 反向约定
			EIO 端口方向控制位
IOC	bit5	R/W	0:接收数据,发送应答
			1: 发送数据,接收应答
			EIO 通讯通道选择位
CHS	bit4	R/W	0: E0IO0 端口
			1: E0IO1 端口
			ECK1 端口使能位
CK1E	bit3	R/W	0: 禁止
			1: 使能
			ECK0 端口使能位
CK0E	bit2	R/W	0: 禁止
			1: 使能
			7816 通讯模块软件复位
ERST	bit1	W	0: 读取时始终为0
			1: 软件复位
			7816 通讯模式选择
MOD	bit0	R/W	0: 普通 UART 模式
			1: 7816 模式

注 1: UBC 为波特率预分频时钟,由 BCS[2:0]进行选择。

EUART 波特率寄存器(EUART_BRR)

偏移地址: 10_H

复位值: 00000000_00000000_000000000_B

 保留

 15
 14
 13
 12
 11
 10
 9
 8
 7
 6
 5
 4
 3
 2
 1
 0

	保留	BRR<10:0>
ı		

_	bit31-11	_	_
BRR<10:0>	bit10-0	R/W	传输波特率设置位,7816 通讯模式同样需要设置波特率

注 1: EUART 传输波特率计算公式如下:

BCS<2:0>=001 时: Fpclk/((BRR+1)*16);

V1.5 190/352

BCS<2:0>=010 时: Fpclk/((BRR+1)*32); BCS<2:0>=011 时: Fpclk/((BRR+1)*64); BCS<2:0>=1xx 时: Fpclk/((BRR+1)*128)。

EUART 中断使能寄存器(EUART_IE)

偏移地址: 18_H

复位值: 00000000_00000000_000000000_B

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	保	留	RBREIE	保留	PEIE	FEIE	ROIE				保留	7			RBIE
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
保	留	RNAIE	ARTEIE		保留		TBWEIE			保	留:			TCIE	TBIE

	ı		_
	bit31-29	_	_
			读接收缓冲错误中断使能位
RBREIE	bit28	R/W	0: 禁止
			1: 使能
_	bit27	_	_
			接收校验错误中断使能位
PEIE	bit26	R/W	0: 禁止
			1: 使能
			接收帧错误中断使能位
FEIE	bit25	R/W	0: 禁止
			1: 使能
			接收数据溢出中断使能位
ROIE	bit24	R/W	0: 禁止
			1: 使能
_	bit23-17	_	_
			接收缓冲器满中断使能位
RBIE	bit16	R/W	0: 禁止
			1: 使能
_	bit15-14	_	_
			接收到错误信号中断使能位
RNAIE	bit13	R/W	0: 禁止
			1: 使能
			自动重发失败中断使能位
ARTEIE	bit12	R/W	0: 禁止
			1: 使能
_	bit11-9	_	_
			写发送缓冲错误中断使能位
TBWEIE	bit8	R/W	0: 禁止
			1: 使能
	bit7-2	_	_
		<u> </u>	

V1.5 191/352

			发送完成中断使能位
TCIE	bit1	R/W	0: 禁止
			1: 使能
			发送缓冲器空中断使能位
TBIE	bit0	R/W	0: 禁止
			1: 使能

EUART 中断标志寄存器(EUART_IF)

偏移地址: 1C_H

复位值: 00000000_00000000_00000000_00000001_B

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	保	留	RBREIF	保留	PEIF	FEIF	ROIF				保留	7			RBIF
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
售	保留	RNAIF	ARTEIF		保留		TBWEIF			保	:留			TCIF	TBIF

_	bit31-29	_	_
RBREIF	bit28	R/W	读接收缓冲错误中断标志位 0:读接收缓冲未错误 1:读接收缓冲错误 软件写 1 清除标志位,写 0 无效
_	bit27	_	_
PEIF	bit26	R/W	接收校验错误中断标志位 0:接收校验正常 1:接收校验错误 软件写 1 清除标志位,写 0 无效
FEIF	bit25	R/W	接收帧错误中断标志位 0:接收帧正常 1:接收帧错误 软件写 1 清除标志位,写 0 无效
ROIF	bit24	R/W	接收数据溢出中断标志位 0:未溢出 1:溢出 软件写 1 清除标志位,写 0 无效
_	bit23-17	_	_
RBIF	bit16	R	接收缓冲器满中断标志位 0: 非满 1: 满(满足 RBIM 所选择的条件) 读 EUART_RBR 寄存器可清除标志位
_	bit15-14	_	_
RNAIF	bit13	R/W	接收到错误信号中断标志位 0:未接收到空闲帧 1:接收到空闲帧

			软件写 1 清除标志位,写 0 无效
ARTEIF	bit12	R/W	自动重发失败中断标志位 0: 自动重发未失败 1: 自动重发失败
			1: 自幼里及天败 软件写 1 清除标志位,写 0 无效
_	bit11-9	_	_
TBWEIF	bit8	R/W	写发送缓冲错误中断标志位 0:写发送缓冲未错误 1:写发送缓冲错误 软件写 1 清除标志位,写 0 无效
_	bit7-2	_	_
TCIF	bit1	R/W	发送完成中断标志位 0: 发送未完成 1: 发送已完成 软件写 1 清除标志位,写 0 无效
TBIF	bit0	R	发送缓冲器空中断标志位 0: 非空 1: 空(满足 TBIM 所选择的条件) 写 EUART_TBW 寄存器可清除标志位

- 注 1: EUART 中断禁止时,如果满足条件仍会置起对应的中断标志位,只是不会产生中断请求。
- 注 2: 对 EUART_IF 寄存器中的各中断标志位,写 0 无效,写 1 才能清除标志位;读操作时,读取的值为 1 表示有中断发生。

EUART 发送数据写入寄存器(EUART_TBW)

偏移地址: 20_H

复位值	复位值: 00000000_00000000_000000000 _B														
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	TBW<31:16>														
15	15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0														
	TBW<15:0>														

			写入的发送数据
TBW<31:0>	bit31-0	W	字节写入时:仅允许对 TBW<7:0>写入
1500 101.05	Dito 1 0	**	半字写入时,仅允许对 TBW<15:0>写入
			字写入时:对 TBW<31:0>写入

EUART 接收数据读取寄存器(EUART_RBR)

偏移地址: 24_H

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	RBR<31:16>														
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
							RBR<	:15:0>							

			读取的接收数据
RBR<31:0>	bit31-0	R	字节读取时:仅允许对 RBR<7:0>读取 半字读取时:仅允许对 RBR<15:0>读取
			字读取时:对 RBR<31:0>读取

EUART 发送缓冲寄存器 0/1(EUART_TB01)

偏移地址: 40_H

复位值: 00100000_00000000_00100000_00000000B

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
货	保留	TBEF1	TP1		保留					-	TB1<8:0>	>			
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
货	保留	TBEF0	TP0		保留						TB0<8:0>	>			

_	bit31-30	_	_
			发送缓冲器 1 空标志位
TBEF1	bit29	R	0: 满
			1: 空
TP1	bit28	R	发送的奇偶校验位
IFI	טונצט	K	发送缓冲器 1 对应的奇偶校验位
_	bit27-25		_
TB1<8:0>	bit24-16	R	发送缓冲器 1
_	bit15-14		_
			发送缓冲器 0 空标志位
TBEF0	bit13	R	0: 满
			1: 空
TP0	bit12	R	发送的奇偶校验位
IFU	DILIZ	IX.	发送缓冲器 0 对应的奇偶校验位
_	bit11-9		_
TB0<8:0>	bit8-0	R	发送缓冲器 0

EUART 发送缓冲寄存器 2/3(EUART_TB23)

偏移地址: 44_H

复位值: 00100000_00000000_00100000_000000000B

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	保留	TBEF3	TP3		保留						TB3<8:0>	>			
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	保留	TBEF2	TP2		保留					-	TB2<8:0>	>			

_	bit31-30		_
			发送缓冲器 3 空标志位
TBEF3	bit29	R	0: 满
			1: 空
TP3	bit28	R	发送的奇偶校验位
1173	DILZO	K	发送缓冲器 3 对应的奇偶校验位
_	bit27-25	_	_
TB3<8:0>	bit24-16	R	发送缓冲器 3
_	bit15-14	_	_
			发送缓冲器 2 空标志位
TBEF2	bit13	R	0: 满
			1: 空
TP2	bit12	R	发送的奇偶校验位
172	DILIZ	K	发送缓冲器 2 对应的奇偶校验位
_	bit11-9	_	_
TB2<8:0>	bit8-0	R	发送缓冲器 2

EUART 接收缓冲寄存器 0/1(EUART_RB01)

偏移地址: 48_H

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
PE1	FE1	RBFF1	RP1		保留					ı	RB1<8:0	>			
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
PE0	FE0	RBFF0	RP0		保留					ı	RB0<8:0>	>			

PE1	bit31	R	接收缓冲器 1 数据校验错误标志位 0:正确 1:错误
FE1	bit30	R	接收缓冲器 1 数据帧错误标志位 0: 正确 1: 错误
RBFF1	bit29	R	接收缓冲器 1 满标志位 0: 空

	1		
			1: 满
DD4	h:+00	R	接收的奇偶校验位
RP1	bit28	K	接收缓冲器 1 对应的奇偶校验位
_	bit27-25	_	_
RB1<8:0>	bit24-16	R	接收缓冲器 1
			接收缓冲器 0 数据校验错误标志位
PE0	bit15	R	0: 正确
			1: 错误
			接收缓冲器 0 数据帧错误标志位
FE0	bit14	R	0: 正确
			1: 错误
			接收缓冲器 0 满标志位
RBFF0	bit13	R	0: 空
			1: 满
RP0	hit10	R	接收的奇偶校验位
RPU	bit12	K	接收缓冲器 0 对应的奇偶校验位
_	bit11-9	_	_
RB0<8:0>	bit8-0	R	接收缓冲器 0

EUART 接收缓冲寄存器 2/3(EUART_RB23)

偏移地址: 4C_H

复位值: 00000000_00000000_00000000_00000000_B

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
PE3	FE3	RBFF3	RP3		保留					ı	RB3<8:0	>			
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
PE2	FE2	RBFF2	RP2		保留						RB2<8:0	>			

PE3	bit31	R	接收缓冲器 3 数据校验错误标志位 0:正确
			1: 错误
			接收缓冲器 3 数据帧错误标志位
FE3	bit30	R	0: 正确
			1: 错误
			接收缓冲器 3 满标志位
RBFF3	bit29	R	0: 空
			1: 满
RP3	bit28	R	接收的奇偶校验位
KF3	DILZO	K	接收缓冲器 3 对应的奇偶校验位
_	bit27-25		_
RB3<8:0>	bit24-16	R	接收缓冲器 3
PE2	hit1E	R	接收缓冲器 2 数据校验错误标志位
FE2	bit15	K	0: 正确

V1.5 196/352

			1: 错误
			接收缓冲器 2 数据帧错误标志位
FE2	bit14	R	0: 正确
			1: 错误
			接收缓冲器 2 满标志位
RBFF2	bit13	R	0: 空
			1: 满
RP2	bit12	R	接收的奇偶校验位
RF2	DILIZ	K	接收缓冲器 2 对应的奇偶校验位
_	bit11-9	_	_
RB2<8:0>	bit8-0	R	接收缓冲器 2

5. 3. 10 EUART应用说明

芯片支持 1 个增强型通用异步接收/发送器 EUART0。

5.4 SPI同步串口通讯控制器 (SPI0/SPI1)

以 SPI0 为例,SPI1 同 SPI0。

5.4.1 概述

- ◇ 支持主控模式、从动模式
- ◇ 支持 4 种数据传输格式
- ◇ 支持主控模式通讯时钟速率可配置
- ◇ 支持 1 到 8 位帧位宽选择
- ◇ 支持 4 级发送缓冲器和 4 级接收缓冲器
- ◇ 支持发送和接收缓冲器空/满中断
- ◇ 支持接收数据溢出中断、发送数据写错误中断、从动模式的发送数据错误中断
- ◇ 支持从动模式的片选变化中断、主控模式的空闲状态中断
- ◇ 支持主控模式延迟接收
- ◇ 支持主控模式发送间隔

5.4.2 结构框图

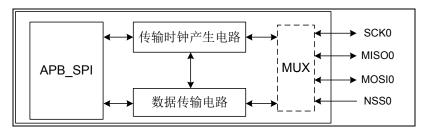


图 5-227 SPIO 电路结构框图

5.4.3 SPI通讯模式

SPI 支持主控和从动两种通讯模式,配置 SPI_CON 寄存器的 MS 位,可选择通讯模式。

通讯时钟端口为 SCK0,从动模式下的片选信号端口为 NSS0,数据输出端口 MISO0,数据输入端口 MOSI0,主控模式下可使用普通 I/O 端口作为片外从设备的片选信号端口,数据输出端口 MOSI0,数据输入端口 MISO0。具体见下表所示:

SPI 通讯端口	SPI 主控模式	SPI 从动模式
SCK0	支持	支持
MOSI0	支持	支持
MISO0	支持	支持
NSS0		支持

5.4.4 SPI数据格式

配置 SPI_CON 寄存器的 DFS,可选择 SPI 通讯数据格式,数据发送和接收时,均是高位在前,低位在后。如果是发送数据在先,接收数据在后,输出端口 MOSI0(或 MISO0)会

在第一个 SCK0 时钟边沿,输出数据的 MSB 位;反之输出端口 MOSI0(或 MISO0)在第一个 SCK0 时钟边沿之前,输出数据的 MSB 位。

以下以SPI从动通讯模式为例,对数据通讯时序进行说明。

SPI_CON 寄存器中 DFS<1:0> = 00, 上升沿发送(先), 下降沿接收(后):

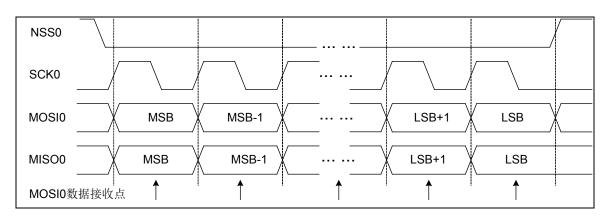


图 5-238 SPI0 时钟上升沿发送,下降沿接收波形示意图

DFS<1:0> = 01,下降沿发送(先),上升沿接收(后):

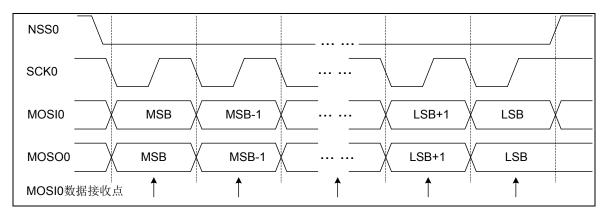


图 5-249 SPI0 时钟下降沿发送,上升沿接收波形示意图

DFS<1:0> = 10, 上升沿接收(先), 下降沿发送(后):

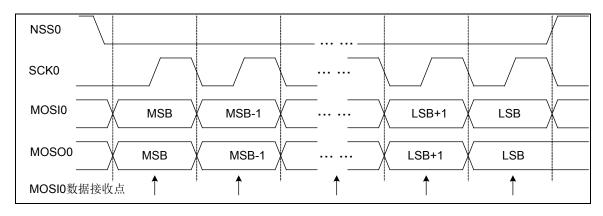


图 5-30 SPI0 时钟上升沿接收,下降沿发送波形示意图

DFS<1:0> = 11, 下降沿接收(先), 上升沿发送(后):

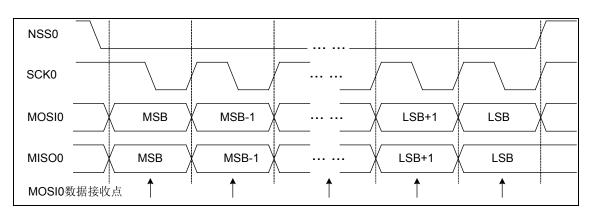


图 5-251 SPI0 时钟下降沿接收,上升沿发送波形示意图

5.4.5 SPI帧位宽

SPI 传输帧位宽可变,配置 SPI_CON 寄存器的 DW<2:0>,可以设置传输帧位宽为 1~8 位。

SPI 模块支持同步发送器与同步接收器,容量均为 4 个字节,采用以下对齐方式:

SPI 帧位宽 1~8 时,发送/接收缓冲器采用字节对齐方式,每一级缓冲器中存储一帧数据, SPI 同步发送器或者同步接收器中最多可缓冲 4+1 帧数据;

以上对齐方式均采用低位对齐,以上"+1"帧数据为移位寄存器中存储的一帧数据,下文中将做详细介绍。

5.4.6 SPI同步发送器

支持 4 级发送缓冲器 TB0, TB1, TB2, TB3 和 1 级发送移位寄存器,可进行数据的连续发送,直到发送缓冲器和移位寄存器全空,最多可连续写入和发送 5 帧数据。发送缓冲器 TB0~TB3 为只读寄存器,只能通过发送数据寄存器 SPI_TBW 写入。

发送数据寄存器 SPI_TBW 为一个虚拟地址单元,物理上不存在实际的寄存器电路,写该寄存器地址单元时,实际上是将发送数据写入到发送缓冲器 TB0~TB3 中,再传输到发送移位寄存器,通过发送数据端口 MOSI0(或 MISO0)进行数据发送。

发送数据寄存器 SPI TBW 支持 3 种写入方式: 字节写入, 半字写入和字写入。

字节方式写入 SPI_TBW 时,发送数据被写入到发送缓冲器 TB0,半字方式写入 SPI_TBW 时,发送数据被同时写入到发送缓冲器 TB0 和 TB1,其中低字节存放在 TB1中,字方式写入 SPI_TBW 时,发送数据被同时写入到发送缓冲器 TB0~TB3,其中低字节存放在 TB3中。

发送数据从写入到发送到端口的数据流示意图如下所示(以主控模式为例):

图 5-262 SPI 发送数据流示意图

支持发送缓冲器空中断,配置 SPI_IE 寄存器的 TBIM,可选择中断模式。

TBIM<1:0>=00,为字节空产生中断,即发送缓冲器 TB0 为空时,SPI IF 寄存器会置起中

断标志 TBIF;

TBIM<1:0>=01,为半字空产生中断,即发送缓冲器 TB0 和 TB1 均为空时,SPI_IF 寄存器会置起中断标志 TBIF:

TBIM<1:0>=10,为字空产生中断,即发送缓冲器 TB0~TB3 均为空时,SPI_IF 寄存器会置起中断标志 TBIF。

支持发送数据寄存器 SPI_TBW 误写中断,当对 SPI_TBW 的写入方式,与发送缓冲器 TB0~TB3 的空闲状态冲突时,或写入操作访问错误时,SPI_IF 寄存器会置起误写中断标志 TBWEIF。

5.4.7 SPI同步接收器

支持 4 级接收缓冲器 RB0, RB1, RB2, RB3 和 1 级接收移位寄存器,可进行数据的连续接收,直到接收缓冲器和移位寄存器全满,最多可连续接收 5 帧数据,再执行数据读取操作。读取接收数据寄存器 SPI_RBR,可得到接收的数据,SPI_STA 寄存器中对应的接收缓冲器清除满标志 RBFF0~RBFF3;也可以读取接收缓冲器 RB0~RB3 得到接收的数据,但不会清除满标志 RBFF0~RBFF3。

接收数据寄存器 SPI_RBR 为一个虚拟地址单元,物理上不存在实际的寄存器电路,读该寄存器地址单元时,实际上是读取接收缓冲器 RB0~RB3 中的数据。

接收数据寄存器 SPI RBR 支持 3 种读取方式:字节读取,半字读取和字读取。

字节方式读取 SPI_RBR 时,实际是读取接收缓冲器 RB0 的数据;半字方式读取 SPI_RBR 时,实际是同时读取接收缓冲器 RB0 和 RB1 的数据,其中 RB0 中的数据为低字节;字方式读取 SPI_RBR 时,实际是同时读取接收缓冲器 RB0~RB3,其中 RB0 中的数据为低字节

接收数据从接收端口到各级缓冲器的数据流示意图如下所示(以主控模式为例):

图 5-273 SPIO 接收数据流示意图

同步接收器的接收顺序如下:

当同步接收器全空时,接收移位寄存器的数据自动移入RB0;

仅 RB1~ RB3 空时,接收移位寄存器的数据自动移入 RB1;

仅 RB2~ RB3 空时,接收移位寄存器的数据自动移入 RB2;

仅 RB2~ RB3 空时,接收移位寄存器的数据自动移入 RB3。

接收缓冲器 RB0~RB3 的数据移到下一级缓冲器后,会清除其接收满标志 RBFF0~RBFF3。

当 4 级接收缓冲器和 1 级接收移位寄存器均满时,如果再次接收到数据位,SPI_IF 寄存器中会置起接收数据溢出中断标志 ROIF,同时不会接收新数据,缓冲器数据仍保持。

支持接收缓冲器满中断,配置 SPI IE 寄存器的 RBIM,可选择中断模式。

RBIM<1:0>=00,为字节满产生中断,即接收缓冲器 RB0 为满时,SPI_IF 寄存器中会置起中断标志 RBIF:

RBIM<1:0>=01,为半字满产生中断,即接收缓冲器 RB0 和 RB1 均为满时,SPI_IF 寄存器中会置起中断标志 RBIF;

RBIM<1:0>=10,为字满产生中断,即接收缓冲器 RB0~RB3 均为满时,SPI_IF 寄存器中会置起中断标志 RBIF。

5.4.8 SPI通讯控制

配置 SPI 通讯模式,数据格式;对主控制模式,还需配置 SPI_CKS,设定传输时钟速率,并选择是否使能接收延迟和发送间隔,对从动模式,传输时钟由主机方提供;SPI_CON 寄存器中配置 EN 和 REN,使能数据发送和接收;将要发送的数据写入发送数据寄存器 SPI_TBW,就可以开始数据的发送,读取接收数据寄存器 SPI_RBR,可以获得接收到的数据。

SPI 主控模式下,发送缓冲器和发送移位寄存器中的数据发送完毕后,进入空闲状态, SPI STA 寄存器中会置起空闲标志 IDLE,并且 SPI IF 寄存器中产生空闲中断标志 IDIF。

SPI 从动模式下,如果发送缓冲器 TB0~TB3 和发送移位寄存器均为空时,又收到主机提供的通讯时钟,则 SPI IF 寄存器中会置起发送错误中断标志 TEIF。

SPI 从动模式,支持片选信号变化中断,配置 SPI IE 寄存器的 NSSIE,可使能该中断。

配置 SPI_CON 寄存器的 RST 位,可将 SPI 通讯模块软件复位,复位后:禁止数据通讯 EN=0; SPI_IE 寄存器中禁止相关中断 TBIE=0,TBWEIE=0,RBIE=0,TEIE=0,ROIE=0,IDIE=0,NSSIE=0;SPI_IF 寄存器中复位相关中断标志为默认值 TBIF=1,TBWEIF=0,RBIF=0,TEIF=0,ROIF=0,IDIF=0,NSSIF=0;SPI_STA 寄存器中置起空闲标志 IDLE=1;置 起 各 发 送 缓 冲 器 空 标 志 TBEF0~TBEF3=1;清除 各 接 收 缓 冲 器 满 标 志 RBFF0~RBFF3=0。

5. 4. 9 SPI延迟接收功能

SPI 通讯时,是利用时钟的上升/下降沿分别对数据的发送和接收进行同步。正常通讯时,对主机接收数据来说,从机送出的数据应在半个时钟周期内,到达主机接收端口,否则会造成主机接收数据的丢失。

SPI 主控模式支持延迟接收功能,配置 SPI_CON 寄存器的 DRE,可使能该功能,主机会再延迟半个时钟周期,在下一个发送时钟边沿处,进行数据的接收采集。所以延迟接收功能使能后,从机发送端口和主机接收端口之间的线路延时,最大可接近 1 个通讯时钟周期。

举例说明 SPI 延迟接收功能: SPI_CON 寄存器中 DFS<1:0>=00, 上升沿发送(先), 下降沿接收(后)。

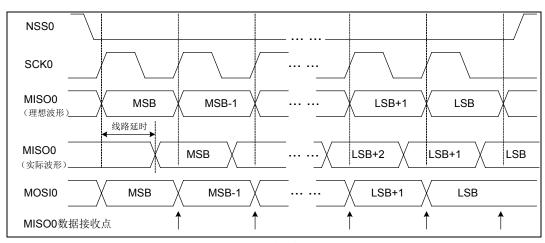


图 5-284 SPI 延迟接收功能波形示意图

5.4.10 SPI数据帧发送间隔功能

SPI 主控模式支持数据帧发送间隔功能,配置 SPI_CON 寄存器的 TME,可使能该功能,配置 TMP,可设定发送间隔周期。当使能 SPI 数据帧发送间隔功能时,每帧数据发送完成后,会等待预先设定的发送间隔时间,再发送下一帧数据。

5. 4. 11 特殊功能寄存器

SPI 控制	寄存器(SF	PI_COI	٧)												
偏移地址	: 00 _H														
复位值:	00000111_	000000	000_000	00000	_000000	000в									
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
RXCLR	TXCLR		保留		D	W<2:0>					TMS	TME			
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	保留						DFS	<1:0>	DRE	保留	REN	MS	RST	EN	
			水田					510	-1.0	DIVE	ル田	IXEI	1010	1.01	LIV

RXCLR	bit31	W	SPI 接收缓冲器清空控制位 0: 无效 1: 清空接收缓冲器
TXCLR	bit30	W	SPI 发送缓冲器清空控制位 0: 无效 1: 清空发送缓冲器
_	bit29-27	_	_
DW<2:0>	bit26-24	R/W	SPI 发送帧位宽(1~8 位) 一帧数据位宽为 DW<2:0>+1 位
TMP<5:0>	bit23-18	R/W	SPI 帧发送间隔周期设置位(仅主控模式支持) 详细说明见备注
TMS	bit17	R	SPI 帧发送间隔状态标志位(仅主控模式支持) 0:非发送间隔状态 1:发送间隔状态
TME	bit16	R/W	SPI 帧发送间隔使能位(仅主控模式支持)

V1.5 203/352

	1	T
		0: 禁止
		1: 使能
bit15-8	_	_
		SPI 通讯数据格式
		00: 上升沿发送(先),下降沿接收(后)
bit7-6	R/W	01: 下降沿发送(先),上升沿接收(后)
		10: 上升沿接收(先),下降沿发送(后)
		11: 下降沿接收(先),上升沿发送(后)
		SPI 延迟接收使能位(仅主控模式支持)
bit5	R/W	0: 禁止
		1: 使能
bit4	_	_
		SPI 接收使能位
bit3	R/W	0: 禁止
		1 : 使能 (需 EN 同时使能)
		SPI 通讯模式选择位
bit2	R/W	0: 主控模式
		1: 从动模式
		SPI 软件复位
bit1	W	0: 读取时始终为 0
		1: 软件复位,自动清零
		SPI 通讯使能位
bit0	R/W	0: 禁止
		1: 使能(SPI通讯使能,但仅使能数据发送)
	bit7-6 bit5 bit4 bit3 bit2	bit7-6 R/W bit5 R/W bit4 — bit3 R/W bit2 R/W

注 1: SPI 帧发送间隔周期计算公式如下:

Т_{SCK}* (1 + ТМР), 即时间间隔为 1~64 个通讯时钟周期 Т_{SCK}。

注 2: 由于不同的通讯数据格式对端口的初始电平要求是不同的(参见上面各通讯波形示意图),因此若无法确定使能 SPI 之前的 SPI 端口的初始值,必须先配置通讯数据格式控制位,对 SPI 端口初始电平进行自动设置;然后再通过对 SPI_CON 寄存器的 EN 和 REN 置 1 来使能 SPI 发送和接收。即 SPI_CON 寄存器需要分两次写入,否则易产生通信错误。

SPI 发送数据写入寄存器(SPI_TBW)

偏移地址: 08H

复位值	: 00000	000_000	00000_0	0000000	0_00000	000 _B									
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							TBW<	31:16>							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
							TBW<	<15:0>							

TBW<31:0> bit31-0 W 写入的发送数据

V1.5 204/352

字节写入时:仅允许对 TBW<7:0>写入
半字写入时:仅允许对 TBW<15:0>写入
字写入时:对 TBW<31:0>写入

SPI 接收数据读取寄存器(SPI_RBR)

偏移地址: 0C_H

复位值: 00000000_00000000_00000000_00000000_B

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							RBR<	31:16>							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
							RBR<	<15:0>							

			读取的接收数据
RBR<31:0>	bit31-0	R	字节读取时:仅允许对 RBR<7:0>读取 半字读取时:仅允许对 RBR<15:0>读取
			字读取时:对 RBR<31:0>读取

SPI 中断使能寄存器(SPI_IE)

偏移地址: 10_H

复位值: 00000000_00000000_00000000_B

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
									保留						
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

_	bit31-12		_
			SPI 接收缓冲器满中断模式选择位
			00: RB0 满产生中断
RBIM<1:0>	bit11-10	R/W	01: RB0 与 RB1 满产生中断
			10: RB0~ RB3 全满产生中断
			11: 保留
			SPI 发送缓冲器空中断模式选择位
			00: TB0 空产生中断
TBIM<1:0>	bit9-8	R/W	01: TB0 与 TB1 空产生中断
			10: TB0~TB3 全空产生中断
			11: 保留
_	bit7	_	_
			SPI 发送数据写错误中断使能位
TBWEIE	bit6	R/W	0: 禁止
			1: 使能
NSSIE	bit5	R/W	SPI 片选变化中断使能位(仅从动模式支持)

V1.5 205/352

			0: 禁止
			1: 使能
			SPI 空闲状态中断使能位(仅主控模式支持)
IDIE	bit4	R/W	0: 禁止
			1: 使能
			SPI 接收数据溢出中断使能位
ROIE	bit3	R/W	0: 禁止
			1: 使能
			SPI 发送数据错误中断使能位(仅从动模式支持)
TEIE	bit2	R/W	0: 禁止
			1: 使能
			SPI 接收缓冲器满中断使能位
RBIE	bit1	R/W	0: 禁止
			1: 使能
			SPI 发送缓冲器空中断使能位
TBIE	bit0	R/W	0: 禁止
			1: 使能

SPI 中断标志寄存器(SPI_IF)

偏移地址: **14**H

1個移	地址:	14 _H													
复位	值: 00	00000	000_000	00000	_00000	0_000	000000)1 _B							
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
									保留						
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
				保督	3				TBWEIF	NSSIF	IDIF	ROIF	TEIF	RBIF	TBIF

_	bit31-7	_	_
TBWEIF	bit6	R/W	SPI 发送数据写错误中断标志位 0:未发生写错误 1:发生写错误,可能会出现下列错误: 对 SPI_TBW 字写入时,TB0~TB3 未全空; 对 SPI_TBW 半字写入时,TB0~TB3 未半空; 对 SPI_TBW 字节写入时,TB0~TB3 全满; 对 SPI_TBW 31:16>进行半字写入; 对 SPI_TBW 31:8>进行字节写入。 软件写 1 清除标志位,写 0 无效
NSSIF	bit5	R/W	SPI 片选变化中断标志位(仅从动模式支持) 0: 片选信号未发生变化 1: 片选信号发生变化 软件写 1 清除标志位,写 0 无效
IDIF	bit4	R/W	SPI 空闲中断标志位(仅主控模式支持) 0:未进入空闲状态

V1.5 206/352

			1: 进入空闲状态 软件写 1 清除标志位,写 0 无效;或软件写寄存器 SPI_TBW 清除标志位
ROIF	bit3	R/W	SPI 接收数据溢出中断标志位 0:未溢出 1:溢出 软件写 1 清除标志位,写 0 无效
TEIF	bit2	R/W	SPI 发送错误中断标志位(仅从动模式支持) 0: 未发生发送错误 1: 发生发送错误: 发送缓冲器和发送移位寄存器 全空时,又收到主控方提供的通讯时钟 软件写 1 清除标志位,写 0 无效
RBIF	bit1	R	SPI 接收缓冲器满中断标志位 读 SPI_RBR 寄存器可清除中断标志位
TBIF	bit0	R	SPI 发送缓冲器空中断标志位 写 SPI_TBW 寄存器可清除中断标志位

注 1: SPI 中断禁止时,如果满足条件仍会置起对应的中断标志位,只是不会产生中断请求。

注 2: 对 SPI_IF 寄存器中的各中断标志位,写 0 无效,写 1 才能清除标志位;读操作时,读取的值为 1 表示有中断发生。

SPI 发送缓冲寄存器(SPI_TB)

偏移抽址. 18.

偏移地	址: 18 _H	l													
复位值	: 00000	000_000	000000_0	000000	0_00000	000 _B									
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	TB3<7:0>										TB2<	<7:0>			
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
			TB1<	<7:0>							TB0<	<7:0>			
	TB3	3<7:0>			bit31-2	24	R	发	送数据	缓冲器	} 3				
	TB2	2<7:0>			bit23-16 R			发	送数据	缓冲器	译2				
	TD4	.7.0			1:14E 0 D				・六 ホア ナロ	加州口	U 4				

TB3<7:0>	bit31-24	R	友送数据缓冲器 3
TB2<7:0>	bit23-16	R	发送数据缓冲器 2
TB1<7:0>	bit15-8	R	发送数据缓冲器 1
TB0<7:0>	bit7-0	R	发送数据缓冲器 0

SPI 接收缓冲寄存器(SPI_RB)

偏移地址: 1C_H

复位值: 00000000_00000000_00000000_00000000B

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
			RB3<	<7:0>							RB2	<7:0>			
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
_			RB1	<7:0>							RB0	<7:0>			

207/352 V1.5

RB3	bit31-24	R	接收数据缓冲器 3
RB2	bit23-16	R	接收数据缓冲器 2
RB1	bit15-8	R	接收数据缓冲器 1
RB0	bit7-0	R	接收数据缓冲器 0

SPI 状态寄存器(SPI_STA)

偏移地址: 20日

/m/19/ 片巴北II	. 20H														
复位值:	00000000	_00000000	1_0000111	1_100000	00 _B										
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
						保留									IDLE
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
RBFF3	RBFF2	RBFF1	RBFF0	TBEF3	TBEF2	TBEF1	TBEF0	NSS		•		保留			

1	1	T
bit31-17	_	_
		SPI 空闲标志位(仅主控模式支持)
bit16	R	0: 非空闲状态
		1: 空闲状态
		RB3 满标志位
bit15	R	0: 空
		1: 满
		RB2 满标志位
bit14	R	0: 空
		1: 满
		RB1 满标志位
bit13	R	0: 空
		1: 满
		RB0 满标志位
bit12	R	0: 空
		1: 满
		TB3 空标志位
bit11	R	0: 满
		1: 空
		TB2 空标志位
bit10	R	0: 满
		1: 空
		TB1 空标志位
bit9	R	0: 满
		1: 空
		TB0 空标志位
bit8	R	0: 满
		1: 空
bit7	R	SPI 片选标志位(仅从动模式支持)
	bit15 bit14 bit13 bit12 bit11 bit10 bit9	bit16 R bit15 R bit14 R bit13 R bit12 R bit11 R bit10 R bit9 R bit8 R

V1.5 208/352

			0: 选中 1: 未选中
_	bit6-0	_	_

SPI 波特率设置寄存器(SPI_CKS)

偏移地址: 24_H

复位值: 00000000_00000000_00000000_00001000 29 28 27 26 25 24 23 22 21 20 19 18 17 16 保留 15 14 13 12 11 10 8 7 6 5 4 3 2 1 0

CKS<9:0>

_	bit31-10	_	_
CKS<9:0>	bit9-0	R/W	SPI 通讯波特率设置位(仅主控模式支持)
			SPI 通讯波特率计算公式如下:
			CKS<9:0>=0x000 时: F _{PCLK} ;
			CKS<9:0>=0x001~0x3FF 时: F _{PCLK} /(CKS * 2)

注 1: SPI 通讯波特率计算公式如下, SPI CKS 寄存器中:

CKS<9:0>=0x000 时: FPCLK;

CKS<9:0>=0x001~0x3FF 时: FPCLK/(CKS * 2)。

5. 4. 12 SPI应用说明

芯片支持2个SPI同步串口通讯控制器,为SPI0与SPI1。

为保证 SPI 的正常通信, SPI 的配置需遵循如下要求:

- 1) 选择 SPI 通讯端口使用滤波器时,SPI 的通讯时钟频率必须小于 20Mz,为确保通讯 稳定性,建议在 SPI 通讯过程中,使能 SPI 通讯端口滤波器。
- 2) SPI 的帧位宽与 SPI CKS 寄存器 CKS 的配置存在以下关系:
 - 当 SPI 帧位宽选择 5~8 位时, CKS >= 0;
 - 当 SPI 帧位宽选择 2~4 位时, CKS >= 1;
 - 当 SPI 帧位宽选择 1 位时, CKS > 2。
- 3) 由于不同的通讯数据格式对端口的初始电平要求是不同的(参见上面各通讯波形示意图),因此若无法确定使能 SPI 之前的 SPI 端口的初始值,必须先配置通讯数据格式控制位,对 SPI 端口初始电平进行自动设置;然后再通过对 SPI_CON 寄存器的 EN和 REN 置 1来使能 SPI 发送和接收,即对 SPI_CON 寄存器分两步写入。

V1.5 209/352

5. 5 I2C总线串口通讯控制器(I2C0)

5.5.1 概述

- ◇ 支持单主控模式
 - 支持自动重复寻呼功能
- 支持自动发送"停止位"功能
- 支持数据应答延迟功能
- 支持数据帧传输间隔功能
- 支持软件触发"起始位"
- 支持软件触发"停止位"
- 支持软件触发数据接收,接收模式可配
- ◇ 支持从动模式
- 支持7位从机地址可配
- 支持从机地址匹配中断标志
- 支持接收"停止位"中断标志
- 支持时钟线自动下拉等待请求功能
- 支持自动发送"未应答"功能
- ◇ 支持 4 级发送缓冲器和 4 级接收缓冲器
- ◇ 通讯端口 SCL0 和 SDA0,均支持输出模式可配置:推挽输出或开漏输出
- ◇ 通讯端口 SCL0 和 SDA0 支持 16 倍速采样器可配置
- ◇ 支持发送和接收缓冲器空/满中断
- ◇ 支持起始位中断、停止位中断
- ◇ 支持接收数据溢出中断、发送数据写错误中断

5.5.2 结构框图

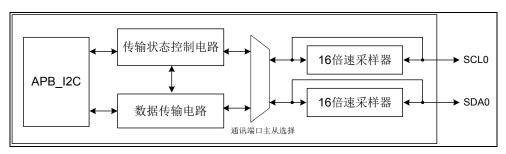


图 5-295 I2C 电路结构框图

5.5.3 I2C总线基本原理

5. 5. 3. 1 **I2C**通讯协议

I2C 总线通讯协议,读写操作示意图如下所示:

V1.5 210/352

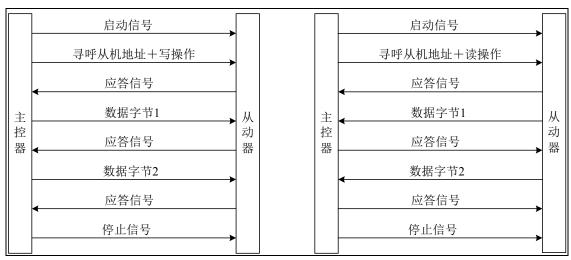


图 5-306 I2C 总线通讯协议示意图

I2C 通讯由主控器发起,发送启动信号 S 控制总线,发送停止信号 P 释放总线。

I2C 总线上可以同时有多个主控器(前提是每个主控器都支持多主机仲裁机制),并至少需要一个从动器,且每一个从动器都必须有一个独立且唯一的寻呼地址。

主控器在发送启动信号后,紧接着发送寻呼从机地址和读写控制位。

读写控制位 R/\overline{W} ,用于通知从动器数据传送的方向,"0"表示由主控器向从动器"写"数据,"1"表示由主控器向从动器"读"数据。

I2C 通讯协议支持应答机制,即发送方每传送一个字节的数据(包括寻呼地址),接收方必须反馈一个应答信号(ACK 或 NACK),发送方再根据应答信号进行下一步的操作。

如果主控器和从动器的时钟端口(SCL)都使用输出开漏设计,且主控器支持时钟线等 待请求操作,那么从动器可以在时钟线为低电平时下拉时钟线,使主控器等待从动器, 直到从动器释放时钟线。

I2C 通讯时,每个数据字节在传输时都是高位在前,低位在后。

I2C 通讯时,数据线 SDA 的数据信号电平,只在时钟线 SCL 的低电平期间变化,在 SCL 高电平期间应保持稳定。如果 SDA 电平在 SCL 高电平期间变化,则会触发起始位或停止位,由高到低变化触发起始位,由低到高变化触发停止位。

5. 5. 3. 2 **I2C**数据传输格式

I2C 通讯时,根据从动器的具体设计规格,确定实际的数据传输格式。以下只介绍一种常用的 I2C 通讯数据传输格式:

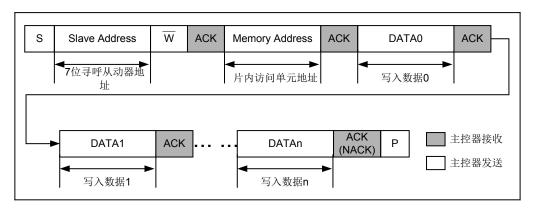


图 5-317 I2C 主控器写入从动器数据示意图

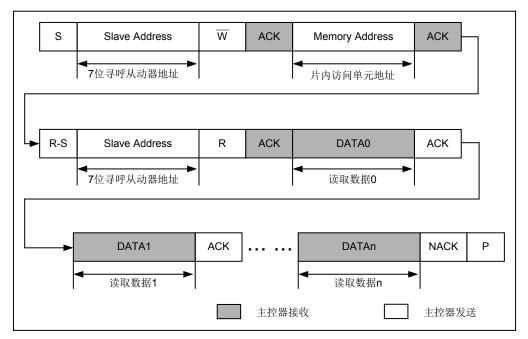


图 5-328 I2C 主控器读取从动器数据示意图

5. 5. 4 I2C通讯端口配置

I2C 通讯端口 SCL0 和 SDA0,均支持推挽输出和开漏输出两种模式,配置 I2C_CON 寄存器的 SCLOD 和 SDAOD,可分别进行选择。

推挽输出是 I/O 端口的标准输出,输出数据 0 和 1 时, I/O 端口电平也分别为 0 和 1。

对推挽输出模式,存在端口电平冲突的风险。例如:当主控器输出 0,而从动器输出 1 时,会发生端口信号电平冲突,导致端口状态不确定。

开漏输出是 I2C 总线协议中的标准模式,可以避免端口电平冲突问题。开漏输出端口的示意图如下所示:

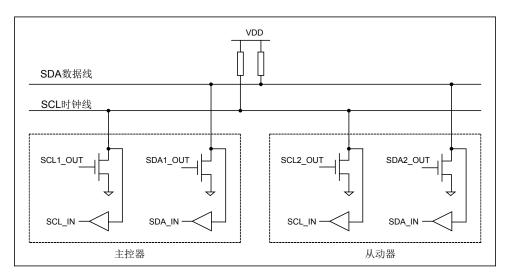


图 5-339 开漏输出端口示意图

开漏输出端口的高电平由 I2C 总线的上拉电阻提供,而低电平由主控器与从动器共同决定。任何一方都可以将总线电平下拉到 0,但只有当双方都释放总线后,总线电平才能被上拉到 1。

5. 5. 5 I2C时基定时器与 16 倍速采样器

通讯端口 SCL0 和 SDA0 支持 16 倍采样器,配置 I2C_CON 寄存器的 SCLSE, SDASE 可使能两个端口的采样器。I2C 时基定时器的计数周期,作为 16 倍速采样器的采样周期。

在 I2C 主控模式下, I2C 时基定时器还用于提供通讯传输波特率。

如果需要使用 16 倍速采样器,或使用 I2C 主控模式,均必须使能 I2C 时基定时器。配置 I2C_CON 寄存器的 TJE,可使能该时基定时器,配 TJP,可设定时基定时周期。

I2C 主控模式下, 总线端口信号的时序参数如下:

参数名称	参数符号	使能 16 倍速采样器	禁止 16 速倍采样器
启动/重启动位建立时间	Tsu:S	> Tosc x (TJP+1) x 12	Tosc x (TJP+1) x 8
启动/重启动位保持时间	THD:S	> Tosc x (TJP+1) x 12	Tosc x (TJP+1) x 8
停止位建立时间	Tsu:P	> Tosc x (TJP+1) x 12	Tosc x (TJP+1) x 8
停止位保持时间	THD:P	> Tosc x (TJP+1) x 12	Tosc x (TJP+1) x 8
数据/应答位建立时间	Tsu:DA	> Tosc x (TJP+1) x 4	Tosc x (TJP+1) x 4
数据/应答位保持时间	Tно:DA	> Tosc x (TJP+1) x 8	Tosc x (TJP+1) x 4
通讯时钟高电平脉宽	Тнідн	Tosc x (TJP+1) x 12	Tosc x (TJP+1) x 8
通讯时钟低电平脉宽	TLOW	Tosc x (TJP+1) x 12	Tosc x (TJP+1) x 8

表 5-1 I2C 总线端口信号的时序参数列表

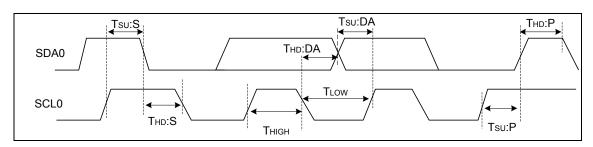


图 5-40 I2C 总线端口信号的波形示意图

使能 16 倍速采样器后,采样器对 I2C 总线进行采样,而 I2C 总线由于上拉电阻的作用, 开始时的电平是不稳定的,当 I2C 总线电平稳定后,采样器的输出才能稳定。因此,这段 不稳定的时间将造成 I2C 传输波特率的下降,下降程度取决于总线电平上升边沿的时间。

I2C 主控模式下,传输波特率计算公式如下(Fosc 为系统时钟频率): 使能通讯端口的 16 倍速采样器时: F_{SCL} =Fosc / ((TJP+1) x 24); 禁止通讯端口的 16 倍速采样器时: F_{SCL} =Fosc / ((TJP+1) x 16)。

5. 5. 6 I2C通讯发送器

支持 4 级发送缓冲器 TB0, TB1, TB2, TB3 和 1 级发送移位寄存器,可进行数据的连续发送,直到发送缓冲器和移位寄存器全空,最多可连续写入和发送 5 帧数据。发送缓冲器 TB0~TB3 为只读寄存器,只能通过发送数据寄存器 I2C_TBW 写入。

发送数据寄存器 I2C_TBW 为一个虚拟地址单元,物理上不存在实际的寄存器电路,写该寄存器地址单元时,实际上是将发送数据写入到发送缓冲器 TB0~TB3 中,再传输到发送移位寄存器,通过数据端口 SDA0 进行数据发送。

发送数据寄存器 I2C_TBW 支持 3 种写入方式:字节写入,半字写入和字写入。

字节方式写入 I2C_TBW 时,发送数据被写入到发送缓冲器 TB0; 半字方式写入 I2C_TBW 时,发送数据被同时写入到发送缓冲器 TB0 和 TB1, 其中低字节存放在 TB1 中; 字方式写入 I2C_TBW 时,发送数据被同时写入到发送缓冲器 TB0~TB3, 其中低字节存放在 TB3中。

发送数据从写入到发送到端口的数据流示意图如下所示:

图 5-341 I2C 发送数据流示意图

支持发送缓冲器空中断,配置 I2C_IE 寄存器的 TBIM,可选择中断模式。

TBIM<1:0>=00,为字节空产生中断,即发送缓冲器 TB0 为空时,会置起 I2C_IF 寄存器的中断标志 TBIF:

TBIM<1:0>=01,为半字空产生中断,即发送缓冲器 TB0 和 TB1 均为空时,会置起 I2C_IF 寄存器的中断标志 TBIF:

TBIM<1:0>=10,为字空产生中断,即发送缓冲器 TB0,TB1,TB2 和 TB3 均为空时,会置起 I2C_IF 寄存器的中断标志 TBIF。

V1.5 214/352

支持发送数据寄存器 I2C_TBW 误写中断,当对 I2C_TBW 的写入方式,与发送缓冲器 TB0~TB3 的空闲状态冲突时,或写入操作访问错误时,会置起 I2C_IF 寄存器误写中断标志 TBWEIF。

5. 5. 7 I2C通讯接收器

支持 4 级接收缓冲器 RB0, RB1, RB2, RB3 和 1 级接收移位寄存器,可进行数据的连续接收,直到接收缓冲器和移位寄存器全满,最多可连续接收 5 帧数据,再执行数据读取操作。读取接收数据寄存器 I2C_RBR,可得到接收的数据,I2C_STA 寄存器中对应的接收缓冲器清除满标志 RBFF0~RBFF3;也可以读取接收缓冲器 RB0~RB3 得到接收的数据,但不会清除满标志 RBFF0~RBFF3。

接收数据寄存器 I2C_RBR 为一个虚拟地址单元,物理上不存在实际的寄存器电路,读该寄存器地址单元时,实际上是读取接收缓冲器 RB0~RB3 中的数据。

接收数据寄存器 I2C_RBR 支持 3 种读取方式:字节读取,半字读取和字读取。

字节方式读取 I2C_RBR 时,实际是读取接收缓冲器 RB0 的数据; 半字方式读取 I2C_RBR 时,实际是同时读取接收缓冲器 RB0 和 RB1 的数据,其中 RB0 中的数据为低字节;字方式读取 I2C_RBR 时,实际是同时读取接收缓冲器 RB0~RB3,其中 RB0 中的数据为低字节。

接收数据从数据端口到各级缓冲器的数据流示意图如下所示:

图 5-352 I2C 接收数据流示意图

接收缓冲器 RB0~RB3 的数据移到下一级缓冲器后,会清除其接收满标志 RBFF0~RBFF3。

当 4 级接收缓冲器和 1 级接收移位寄存器均满时,会立即置起接收数据溢出中断标志 I2C IF 寄存器中 ROIF,同时不会接收新数据。

支持接收缓冲器满中断,I2C IE 寄存器种配置 RBIM,可选择中断模式。

RBIM<1:0>=00,为字节满产生中断,即接收缓冲器 RB0 为满时,会置起 I2C_IF 寄存器的中断标志 RBIF;

RBIM<1:0>=01,为半字满产生中断,即接收缓冲器 RB0 和 RB1 均为满时,会置起 I2C_IF 寄存器的中断标 RBIF;

RBIM<1:0>=10,为字满产生中断,即接收缓冲器 RB0,RB1,RB2 和 RB3 均为满时,会置起 I2C IF 寄存器的中断标志 RBIF。

5. 5. 8 I2C通讯控制

配置 I2C_CON 寄存器的 RST,可将 I2C 通讯模块软件复位,复位后:禁止数据通讯 EN=0; I2C_IE 寄存器中禁止相关中断 SRIE=0, SPIE=0, TBIE=0, TBWEIE=0, RBIE=0, TEIE=0, ROIE=0, NAIE=0; I2C_IF 寄存器中复位相关中断标志为默认值 SRIF=0, SPIF=0, TBIF=1, TBWEIF=0, RBIF=0, TEIF=0, ROIF=0, NAIF=0; 置起空闲标志 IDLE=1; 置起各发送缓冲器空标志 TBEF0~TBEF3=1; 清除各接收缓冲器满标志 RBFF0~RBFF3=0。

5. 5. 8. 1 **I2C**起始位

配置 SRT,可触发 I2C 发送起始位,启动或重启动一次传输操作,发送寻呼从动器地址。 起始位波形图如下:

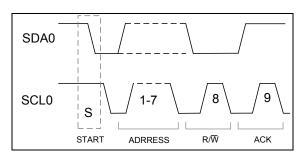


图 5-363 I2C 起始位波形图

I2C 主控模式,支持自动寻呼功能。配置 I2C_MOD 寄存器的 SRAE,可使能自动寻呼功能,I2C 主控器会自动判断"地址应答"位,若该"地址应答"位为未应答 NACK,则自动发送起始位,重启动本次地址寻呼操作,并且直到接收到应答 ACK 才停止继续重启动。在芯片应用时,使能 I2C 自动寻呼功能前,需确保被寻呼的地址是真实存在的,否则会造成主控器芯片持续重启动地址寻呼。

举例说明自动寻呼功能: 芯片通过 I2C 向 EEPROM 器件写入数据时,存在写等待时间。在 EEPROM 存储器本身写数据期间,主控器芯片寻呼该器件时,将收到未应答 NACK。可有两种方法解决 EEPROM 写数据期间的地址寻呼问题: 一种是主控器芯片设定寻呼间隔,在 EEPROM 数据写操作完成后,再寻呼该器件;另一种是主控器芯片启动自动寻呼功能,持续寻呼该器件,直到收到应答 ACK 为止。

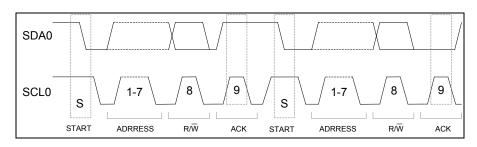


图 5-374 I2C 自动寻呼波形图

5. 5. 8. 2 **I2C**停止位

配置 I2C_MOD 寄存器的 SPT,可触发 I2C 发送停止位,结束本次传输操作。停止位波形图如下:

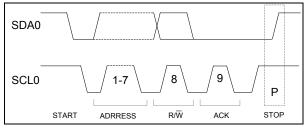


图 5-385 I2C 停止位波形图

I2C 主控模式,支持自动结束功能。配置 I2C_MOD 寄存器的 SPAE,可使能自动结束功

V1.5 216/352

能,在发送 NACK 或接收 NACK 后,自动发送停止位,结束本次不成功的传输操作。自动结束功能的优先级小于自动寻呼功能。

5. 5. 8. 3 **I2C**应答延迟功能

I2C 的主控模式,支持应答延迟功能,配置 I2C_MOD 寄存器的 ADE,可使能该功能,配置 ADLY,可设定应答延迟的时间。应答延迟功能使能后,I2C 主控器将延迟发送通讯时钟 SCL0 的应答位脉冲。

当从动器不能按照正常数据的通讯速率,对应答位进行接收和发送时,主控器可使能应答延迟功能,并根据从动器的具体设计规格,设定应答延迟时间。

举例说明 I2C 应答延迟功能: I2C_MOD 寄存器中 ADLY<2:0>=001, 延迟时间为 1 个 T_{SCI0}, 通讯波形示意图如下:

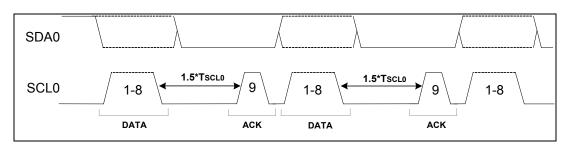


图 5-396 I2C 应答延迟功能波形示意图

5. 5. 8. 4 **I2C**数据帧传输间隔功能

I2C 主控模式,支持数据帧传输间隔功能,配置 I2C_MOD 寄存器的 TIS,可使能该功能,并设定间隔的时间。数据帧传输间隔时间设定后,在当前数据帧的应答位脉冲之后,I2C 主控器将延迟一段设定的时间,再发送下一个数据帧的通讯脉冲。

当从动器不能及时读取接收到的数据,或准备好发送的数据时,主控器可根据从动器的具体设计规格,设定数据帧的传输间隔。

举例说明 I2C 数据帧传输间隔功能: I2C_MOD 寄存器中 TIS<3:0>=0001,间隔时间为 1 个 T_{SCLO} ,通讯波形示意图如下:

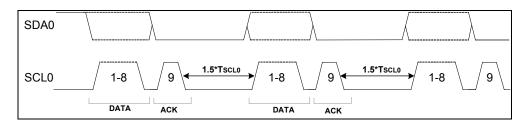


图 5-407 I2C 数据帧传输间隔功能波形示意图

5. 5. 8. 5 I2C时钟线自动下拉等待请求功能

I2C 从动模式,支持时钟线自动下拉等待请求功能,配置 I2C_MOD 寄存器的 CSE,可使能该功能。

为实现 I2C 时钟线的下拉等待请求功能,还需配置 I2C_CON 寄存器的 SCLOD,将通讯端口 SCLO 选择为开漏输出模式,通过上拉电阻提供高电平,使从动器可对时钟线下拉

V1.5 217/352

控制, 使主控器等待。

在通常情况下,从动器处于释放时钟线的状态,时钟线 SCL0 完全由主控器控制。但当从动器出现异常情况,短时间内无法继续进行数据传输时,从动器可以在时钟线 SCL0 为低电平时输出 0 (不可以在高电平时输出 0,否则会破坏数据传输过程),强行使 SCL0 保持低电平,使主控器进入通讯等待状态,直到从动器释放时钟线。时钟线下拉等待请求波形示意图如下:

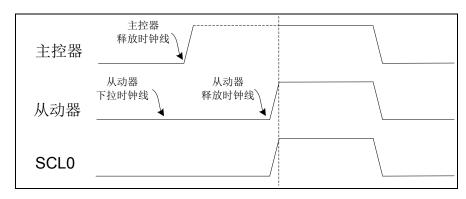


图 5-418 I2C 时钟线下拉等待波形示意图

I2C 从动模式下,时钟自动下拉等待请求功能使能后,当接收到本芯片寻呼地址和读操作位时,如果 I2C 的发送缓冲器和发送移位寄存器全空,且自动发送未应答使能位 ANAE=0,则会自动将时钟线下拉;当接收到本芯片寻呼地址和写操作位时,如果 I2C 的接收缓冲器和接收移位寄存器全满,则会自动将时钟线下拉。

5. 5. 8. 6 **I2C**自动发送未应答功能

I2C 从动模式,支持自动发送未应答 NACK 功能,配置 I2C_MOD 寄存器的 ANAE,可使能该功能。从动器使能自动发送未应答功能时,不会强制控制时钟线(即使时钟线自动下拉使能位 CSE=1),适用于通讯端口 SCL0 选择为推挽输出或开漏输出模式两种情况。

I2C 从动模式下,自动发送未应答 NACK 功能使能后,当接收到本芯片寻呼地址和读操作位时,如果 I2C 的发送缓冲器和发送移位寄存器全空,则会自动发送未应答 NACK; 当接收到本芯片寻呼地址和写操作位时,如果 I2C 的接收缓冲器和接收移位寄存器全满,则会自动发送未应答 NACK,通知主控器重新通讯。

5.5.9 特殊功能寄存器

I2C	控制寄	存器	(I2C_	CON)												
偏移	地址:	00 _H														
复位	值: 0	00000	00_00	00000	00_111	11111_	_00000	0000 _B								
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	
			保	:留					SA<6:0>							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
			TJP∙	<7:0>				TJE	保留	SDASE	SCLSE	SDAOD	SCLOD	RST	EN	
_											·					
	— bit31-24							_	-	_						

V1.5 218/352

			从机地址位
SA<6:0>	bit23-17	R/W	主控模式:触发"启动/重启动"操作时,自动发送
			从动模式:接收到"启动/重启动"后用于匹配比较
			I2C 读写控制位
			0: 写操作
D)4/	b.114.0		1: 读操作
RW	bit16	R/W	主控模式:该位可读可写,触发"启动/重启动"操
			作时,自动发送该位
			从动模式:该位只可读,从机地址匹配后,硬件自动
			根据接收到的控制位值,更新该位
T.ID. (7.0)	F.145.0	DAM	I2C 时基定时周期设置位
TJP<7:0>	bit15-8	R/W	00~FF: 分别为 1~256 个 Трськ
			I2C 时基定时器使能位
TJE	bit7	R/W	0: 禁止
			1: 使能
_	bit6	_	_
			SDA 端口 16 倍速采样使能位
SDASE	bit5	R/W	0: 禁止
			1: 使能
			SCL 端口 16 倍速采样使能位
SCLSE	bit4	R/W	0: 禁止
			1: 使能
			SDA 端口输出模式选择位
SDAOD	bit3	R/W	0: 推挽输出
			1: 开漏输出
			SCL 端口输出模式选择位
SCLOD	bit2	R/W	0: 推挽输出
			1: 开漏输出
			I2C 软件复位
RST	bit1	W	0: 读取时始终为 0
			1: 软件复位,硬件自动清零
			I2C 通讯使能位
EN	bit0	R/W	0: 禁止
			1: 使能

I2C 工作模式寄存器(I2C_MOD)

偏移地址: 04_H

复位值: 00000000_00000000_00000000_00000000B

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
			保督	Pi Pi			TAS		保旨	留	BLD	RDT	SPT	SRT	
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	TIS<	<3:0>		ADE	Α	DLY<	2:0>	SPAE	SRAE	ANAE	CSE	ı	RDM<2:0>	>	MS

_	bit31-25	_	_
	3.10 : 20		I2C 发送应答设置位(仅从动模式支持)
TAS	bit24	R/W	0: 发送 ACK
			1: 发送 NACK
_	bit23-20	_	
			I2C 总线释放功能控制位(仅主控模式支持)
			0: 无效
			1: SDA 端口为高电平, SCL 端口发送 8 个时
BLD	bit19	R/W	钟。
			该功能需配合 I2C 起始位和停止位使用,达到
			释放时钟线和数据线的目的。
			I2C 接收数据触发位(仅主控模式支持)
RDT	bit18	R/W	0: 无效
ND1	Dit 10	IN/VV	1:开始发送通讯时钟,接收数据,由 RDM<2:0>
			配置接收数据模式
			I2C 停止位触发位(仅主控模式支持)
SPT	bit17	R/W	0: 无效
			1: 触发停止位
			I2C 起始位触发位(仅主控模式支持)
SRT	bit16	R/W	0: 无效
			1: 触发起始位,产生起始位发送完成中断标志
			I2C 数据帧传输间隔设置位(仅主控模式支持)
TIS<3:0>	bit15-12	R/W	0000: 禁止
			0001~1111: 分别为 1~15 个 I2C 通讯时钟周期
			I2C 应答延迟使能位(仅主控模式支持)
ADE	bit11	R/W	0: 禁止
			1: 使能
			I2C 应答延迟时间设置位(仅主控模式支持)
			000: 0.5 个 I2C 通讯时钟周期
			001: 1 个 I2C 通讯时钟周期
A.D.L.Y. 0.0		5 444	010: 1.5 个 I2C 通讯时钟周期
ADLY<2:0>	bit10-8	R/W	011: 2 个 I2C 通讯时钟周期
			100: 2.5 个 I2C 通讯时钟周期
			101: 3 个 I2C 通讯时钟周期
			110: 3.5 个 I2C 通讯时钟周期
			111: 4 个 I2C 通讯时钟周期
			I2C 自动结束使能位(仅主控模式支持)
SPAE	bit7	R/W	0: 禁止
			1: 使能(当发送或接收 NACK 后,自动发送 停止位,优先级小于 SRAE)
			I2C 自动寻呼使能位(仅主控模式支持) 0: 禁止
SRAE	bit6	R/W	1: 使能 (若寻呼地址的应答位为 NACK,则自
			动重启动本次寻呼操作)
			90里川90平仅寸叮踩下/

V1.5 220/352

ANAE	bit5	R/W	I2C 自动发送未应答使能位(仅从动模式支持) 0: 禁止 1: 使能
CSE	bit4	R/W	I2C 时钟线自动下拉等待请求使能位(仅从动模式支持) 0: 禁止 1: 使能
RDM<2:0>	bit3-1	R/W	12C 接收模式选择位(仅主控模式支持) 000:接收 1 字节,发送 ACK 001:接收 1 字节,发送 NACK 010:连续接收 2 字节,每个字节发送 ACK 011:连续接收 2 字节,前 1 字节发送 ACK, 后 1 字节,发送 NACK 100:连续接收 4 字节,每个字节发送 ACK 101:连续接收 4 字节,前 3 字节发送 ACK 101:连续接收 4 字节,前 3 字节发送 ACK 110:连续接收,每个字节发送 ACK
MS	bit0	R/W	I2C 通讯模式选择位 0: 主控模式 1: 从动模式

注:如果 ANAE 与 CSE 同时为 1,则 ANAE 优先级高,即发送未应答位后,不会将 I2C 时钟线自动下拉。

I2C 中断使能寄存器(I2C_IE)

偏移地址: 08_H

1/闸杉	5地址:	08 _H													
复位	拉值: 0	00000	000_000000	0000_000	0000_00	000000	В								
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
								保留							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	保留		TIDLEIE	RBIM	<1:0>	TBIM	<1:0>	TBWEIE	NAIE	ROIE	TEIE	RBIE	TBIE	SPIE	SRIE

_	bit31-13	_	_
			I2C 发送空闲中断使能位
TIDLEIE	bit12	R/W	0: 禁止
			1: 使能
			I2C 接收缓冲器满中断模式选择位
			00: 字节满产生中断
RBIM<1:0>	bit11-10	R/W	01: 半字满产生中断
			10: 字满产生中断
			11: 保留
TDIM <4.0>	P:10 0	DAA	I2C 发送缓冲器空中断模式选择位
TBIM<1:0>	bit9-8	R/W	00: 字节空产生中断

V1.5 221/352

		1	T-
			01: 半字空产生中断
			10: 字空产生中断
			11: 保留
			I2C 发送数据写错误中断使能位
TBWEIE	bit7	R/W	0: 禁止
			1: 使能
			I2C 未应答 NACK 中断使能位
NAIE	bit6	R/W	0: 禁止
			1: 使能
			I2C 接收数据溢出中断使能位
ROIE	bit5	R/W	0: 禁止
			1: 使能
			I2C 发送数据错误中断使能位
TEIE	bit4	R/W	0: 禁止
			1: 使能
			I2C 接收缓冲器满中断使能位
RBIE	bit3	R/W	0: 禁止
			1: 使能
			I2C 发送缓冲器空中断使能位
TBIE	bit2	R/W	0: 禁止
			1: 使能
			I2C 停止位中断使能位
SPIE	bit1	R/W	0: 禁止
			1: 使能
			I2C 起始位中断使能位
SRIE	bit0	R/W	0: 禁止
			1. 使能
		l	W 7/1=

I2C 中断状态寄存器(I2C_IF)

偏移地址: 0CH

复位值: 00000000_00000000_0000000100_B

 31
 30
 29
 28
 27
 26
 25
 24
 23
 22
 21
 20
 19
 18
 17
 16

 保留

7 15 14 13 12 11 10 8 6 5 4 3 2 1 0 保留 TIDLEIF 保留 **TBWEIF** NAIF ROIF TEIF RBIF TBIF SPIF SRIF

_	bit31-13	_	
TIDLEIF	bit12	R/W	12C 发送空闲中断标志位 0:未产生空闲中断 1:空闲中断标志 软件写 1 清除标志位,写 0 无效
_	bit11-8	—	_

V1.5 222/352

			120 华光教报写供沿山底与土台
			12C 发送数据写错误中断标志位
			0: 未发生写错误
			1: 发生写错误,可能会出现下列错误:
TDWELE	h:17	D 44/	对 I2C_TBW 字写入时,TB0~TB3 未全空;
TBWEIF	bit7	R/W	对 I2C_TBW 半字写入时,TB0~TB3 未半空;
			对 I2C_TBW 字节写入时,TB0~TB3 全满;
			对 I2C_TBW<31:16>进行半字写入;
			对 I2C_TBW<31:8>进行字节写入。
			软件写 1 清除标志位,写 0 无效
			12C 未应答中断标志位
			0: 未产生未应答 NACK
NAIF	bit6	R/W	1: 产生未应答 NACK
			I2C 接收或发送 NACK 位后,产生中断标志
			软件写 1 清除标志位,写 0 无效
			12C 接收数据溢出中断标志位
ROIF	bit5	R/W	0: 未溢出
			1: 溢出
			软件写 1 清除标志位,写 0 无效
			I2C 发送错误中断标志位
			0: 未发生发送错误
TEIF	bit4	R/W	1: 发生发送错误: 发送缓冲器和发送移位寄存器全空
			时,又收到主控方提供的通讯时钟
			软件写 1 清除标志位,写 0 无效
			12C 接收缓冲器满中断标志位
RBIF	bit3	R	0: 非满
			1: 满
			读 I2C_RBR 寄存器可清除中断标志位
			12C 发送缓冲器空中断标志位
TBIF	bit2	R	0: 非空
			1: 空
			写 I2C_TBW 寄存器可清除中断标志位
			I2C 停止位中断标志位
			0: 未产生停止位
SPIF	bit1	R/W	1: 产生停止位
			主控模式:发送停止位后产生中断标志。
			从动模式:接收停止位后产生中断标志。
			软件写 1 清除标志位,写 0 无效
			I2C 起始位中断标志位
			0: 未产生起始位
05:-	1.114		1: 产生起始位
SRIF	bit0	R/W	主控模式:如果禁止自动寻呼,发送完"起始位+地址+接收应
			答位后"产生中断标志。如果使能自动寻呼,发送
			完"起始位+地址+接受应答位",并且应答位为 ACK
			时,产生中断标志。

V1.5 223/352

从动模式:接收到"起始位+地址位+读写控制位",且地址匹配
时,在发送应答位或未应答位之前,产生中断标志。
软件写 1 清除标志位,写 0 无效

注:对 I2C_IF 寄存器中的各中断标志位,写 0 无效,写 1 才能清除标志位;读操作时,读取的值为 1 表示有中断发生。

I2C 发送数据写入寄存器(I2C_TBW)

偏移地址: 10_H

复位值: 00000000_00000000_00000000_00000000_B

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	TBW<31:16>														
45	4.4	40	40	44	40	•	0	7	^	-	4	•	2	4	
15	14	13	12	11	10	9	8		6	5	4	3		i i	U
	TBW<15:0>														

			写入的发送数据
TDW-21.05	h:+21 0	\\\	字节写入时:仅允许对 TBW<7:0>写入
TBW<31:0>	bit31-0	W	半字写入时:仅允许对 TBW<15:0>写入
			字写入时:对 TBW<31:0>写入

I2C 接收数据读取寄存器(I2C_RBR)

偏移地址: 14_H

复位值: 00000000_00000000_00000000_00000000B 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 RBR<31:16> 12 13 11 10 0 RBR<15:0>

			读取的接收数据
RBR<31:0>	bit31-0	D	字节读取时:仅允许对 RBR<7:0>读取
NDN~31.0>	DILO 1-0		半字读取时:仅允许对 RBR<15:0>读取
			字读取时:对 RBR<31:0>读取

I2C 发送缓冲寄存器(I2C_TB)

偏移地址: 18_H

复位值: 00000000_00000000_00000000_00000000B

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	
	TB3<7:0>									TB2<7:0>						
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
TB1<7:0>											TB0<	<7:0>				

V1.5 224/352

TB3<7:0>	bit31-24	R	发送数据缓冲器 3
TB2<7:0>	bit23-16	R	发送数据缓冲器 2
TB1<7:0>	bit15-8	R	发送数据缓冲器 1
TB0<7:0>	bit7-0	R	发送数据缓冲器 0

I2C 接收缓冲寄存器(I2C_RB)

偏移地:	址: 1C _H	l													
复位值	复位值: 00000000_00000000_000000000B														
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
			RB3	<7:0>				RB2<7:0>							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
			RB1	<7:0>							RB0<	<7:0>			

RB3<7:0>	bit31-24	R	接收数据缓冲器 3
RB2<7:0>	bit23-16	R	接收数据缓冲器 2
RB1<7:0>	bit15-8	R	接收数据缓冲器 1
RB0<7:0>	bit7-0	R	接收数据缓冲器 0

I2C 状态寄存器(I2C_STA)

偏移地址: 20_H

复位值: 00000000_00000010_00001111_00000000B 29 28 27 26

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
					保留									IDLE	ACK
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
RBFF3	RBFF2	RBFF1	RBFF0	TBEF3	TBEF2	TBEF1	TBEF0					保留			

_	bit31-18	_	_
			I2C 空闲标志位
IDLE	bit17	R	0: 非空闲状态
			1: 空闲状态
			I2C 应答位
ACK	bit16	R	0:应答 ACK
			1: 未应答 NACK
			RB3 满标志位
RBFF3	bit15	R	0: 空
			1: 满
			RB2 满标志位
RBFF2	bit14	R	0: 空
			1: 满

225/352 V1.5

			RB1 满标志位
RBFF1	bit13	R	0: 空
			1: 满
			RB0 满标志位
RBFF0	bit12	R	0: 空
			1: 满
			TB3 空标志位
TBEF3	bit11	R	0: 满
			1: 空
			TB2 空标志位
TBEF2	bit10	R	0: 满
			1: 空
			TB1 空标志位
TBEF1	bit9	R	0: 满
			1: 空
			TB0 空标志位
TBEF0	bit8	R	0: 满
			1: 空
	bit7-0		

5. 5. 10 I2C应用说明

芯片支持 1 个 I2C 总线串口通讯控制器 I2C0。

I2C 总线在连续发送数据的应用中,利用发送空闲标志(TIDLEIF)进入中断的方式进行数据发送时,要注意以下 2 点:

- 1) 主控模式下,在主程序中设置 Memory Address 之后,发送空闲标志(TIDLEIF)置 1 并触发中断,在中断服务程序中,将数据写入 I2C_TBW 中,并开始发送数据;
- 2)从动模式下,必须在主程序中等待 I2C_STA 寄存器的 IDLE 置 1 之后,将以 Memory Address 为起始地址的第一个数据写入 I2C_TBW 中。当主机发送读命令后,发送空闲标志(TIDLEIF)置 1 并触发中断,在中断服务程序中读取接收的数据,在主机读完数据后,必须发送 STOP 位,否则,若要直接再次启动读操作,可能导致读取命令发送错误。

I2C_IE 寄存器的 TBIM(发送缓冲器中断模式选择位)会影响 TIDLEIF,因此,对于字节发送或半字发送,在 I2C 开始发送数据时最好使用字空产生中断模式(TBIM=2'b10),否则会连续产生多个字节空中断,容易导致发送数据出错。如果使用字节空(TBIM=2'b00)或者半字空(TBIM=2'b01)中断模式,则发送开始时,必须向 I2C_TBW 写满四个待发送的数据字节,否则也会连续产生多个字节空或半字空中断。

使用发送空闲标志(TIDLEIF)的好处在于,在 I2C 发送空闲中断使能位(TIDLEIE)有效的情况下,只需清除发送空闲标志位(TIDLEIF),即可达到连续发送数据的目的。

5.6 模数转换器 (ADC)

5.6.1 概述

- ◇ 支持 12 位转换结果,有效精度为 11 位
- ◇ 采样速率最高支持 125ksps (kilo-samples per second)
- ◇ 支持 16 个模拟输入通道(AIN14、AIN15 不可用,可用 14 通道)
- ◇ 支持 ADC 中断,可唤醒睡眠模式(仅在时钟源为 LRC 时唤醒)
- ◇ 支持正负向参考电压可配置
- ◇ 支持转换时钟可配置
- ◇ 支持自动转换比较功能

5.6.2 结构框图

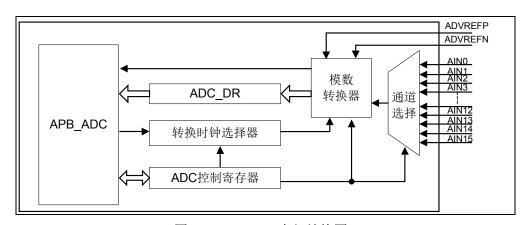


图 5-429 ADC 内部结构图

5.6.3 ADC基本配置

将端口配置为 ADC 模拟输入通道的方式如下:

配置 GPIO_PAINEB/GPIO_PBINEB 寄存器,关断该端口的数字输入; 配置 GPIO_PADIR/GPIO PBDIR 寄存器,关断该端口的数字输出。

配置 ADC_CHS 寄存器的 CHS<4:0>,选择相应的 ADC 模拟通道。

ADC 正常工作时必须使能的控制位: ADC_VREFCON 寄存器的 VREF_EN 和 IREF_EN, ADC_CON0 寄存器的 EN, ADC_CON1 寄存器的 VCMBUF_EN。

5. 6. 4 ADC高精度参考电压

ADC 提供一个高精度内部 1.8V 或者 2.6V 的参考源,用作 ADC 的参考电压。ADC 正常工作时必须使能 VREF_EN 与 IREF_EN。

5.6.5 ADC数据转换

配置 ADC_CHS 寄存器的 CHS<4:0>,可选择 ADC 模拟通道;配置 ADC_CON1 寄存器的 CLKS,可选择工作时钟源;配置 CLKDIV<2:0>,可选择时钟源预分频;配置

VREFP<1:0>,可选择正向参考电压,配置 VREFN,可选择负向参考电压,当 VREFP<1:0>为 01 时,必须开启 VRBUF_EN;配置 ADC_CON0 寄存器的 EN,使能 ADC;最后配置 TRIG,启动 A/D 转换,转换完成后,硬件电路自动将 TRIG 清零。

ADC 在每次转换完成后,会产生 ADC_IF 寄存器的中断标志 IF,需软件清零;启动下一次 A/D 转换时,需重新配置 TRIG。

AD 采样支持硬件或软件控制,可通过 ADC_CON1 寄存器的 SMPS 位进行选择,默认为硬件控制,通过配置 ADC_CON0 寄存器的 TRIG 位,启动 A/D 采样和转换,采样时间最快为 1 个 ADC 时钟(取决于芯片的实际应用条件和 ADC 时钟源频率),转换时间为 14 个 ADC 时钟。AD 采样选择为软件控制时,通过配置 ADC_CON1 寄存器的 SMPON 位,启动 A/D 采样和转换。

在使用 VDD 作参考电压,ADC 精度为 11 位时,最快采样速率为 125Ksps,即每秒可输 出 125K 个高精度 ADC 转换值。通过配置 ADC_CON1 寄存器的 CLKS 和 CLKDIV 寄存器来产生合适的 ADC 时钟。

ADC 时钟源选取系统时钟,采用内部参考电压 VREFP 时的建议配置如下表所示。

	系统时钟	ADC 时钟分频比	ADC 精度	转换速率
	48MHz	32	10.5 位	93.75Ksps
	32MHz	8	9位	250Ksps
ĺ	32MHz	32	11位	62.5Ksps

表 5-2 ADC 精度与转换速率的对应关系列表

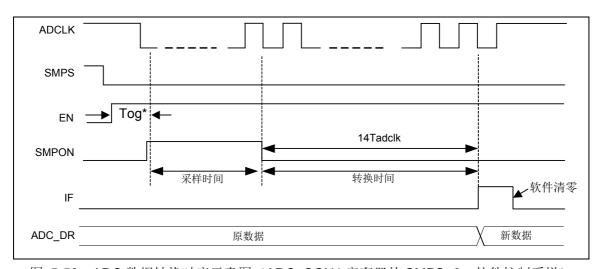


图 5-50 ADC 数据转换时序示意图 (ADC_CON1 寄存器的 SMPS=0, 软件控制采样)

228/352

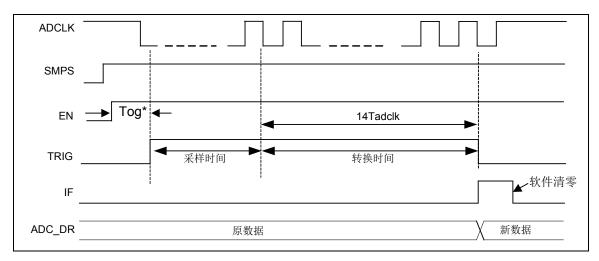


图 5-431 ADC 数据转换时序示意图 (ADC_CON1 寄存器的 SMPS=1,硬件控制采样)

注 1: Tog > 100 μs;

注 2: AD 转换时钟周期 Tadclk,可通过 ADC_CON1 寄存器的 CLKS 和 CLKDIV<2:0>配置不同的频率。

注 3: 实际应用中还需要考虑 ADC 自身工作的建立(参见寄存器 ADC_CON0 后面的备注描述内容)。

启动一次 A/D 转换例程

LDR R0, = ADC_VREFCON ;使能 VREF_EN 与 IREF_EN,选择 2.6V LDR R1, =0X07 STR R1, [R0]

LDR R0, =ADC_CON1 ; A/D 时钟源选择 PCLK 的 32 分频,选择内部

;参考电压 VREF 2.6V 为正向参考电压, ;VREF BUF 使能,选择硬件控制采样时间, ;VCM BUF 使能且为高速模式,AD 转换高速

;使能

LDR R1, =0X03005905

STR R1, [R0]

LDR R0, =ADC CHS ;选择 AIN3

LDR R1, =0X03

STR R1, [R0]

LDR R0, =ADC_CON0 ;使能 ADC

LDR R1, =0X01

STR R1, [R0]

.....;延时约 100 µs

LDR R0, =ADC_CON0 ; A/D 转换

LDR R1, =0X03

STR R1, [R0]

WAIT4IF

BEQ

LDR R0, =ADC IF ;等待 ADC 中断

LDR R1, =0X01

WAIT4IF

TST R0, R1

STR R1, [R0] ;清零 ADC 中断

V1.5 229/352

5.6.6 自动转换比较功能

芯片提供自动转换比较功能,可自动完成多次 AD 转换并计算出平均值,并根据所设定的阈值进行比较产生相应的中断,平均值和每次转换的结果均可读。

配置 ADC_CON0 寄存器的 ACP_EN 为 1 时,对 TRIG 写 1 则启动连续自动转换比较功能,并固定为硬件控制采样时间,对 SMPS 写 0 无效。启动此功能前必须先完成下面的配置:

配置 ADC CON1 寄存器的 ST 可设置采样时间,建议采样时间大于 1 µ s。

配置 ADC_ACPC 寄存器的 TIMES,可设置每个溢出时间周期内的 ADC 采样转换次数。

配置 OVFL_TIMES,可设置自动转换比较溢出时间,每次计数溢出后自动计算 ADC 转换的平均值,保存在自动转换数据寄存器 ADC_ACPMEAN 中,如果 ADC_CON0 寄存器的 EN 关闭,则硬件自动将溢出计数和自动转换数据寄存器清零。若溢出时间已到,但采样转换次数(由 TIMES<1:0>设定的次数)未满,则直到完成所有 ADC 转换次数后,才启动下一个溢出时间计算。

配置 ADC_ACPC 寄存器的 CLKS 可选择溢出计数的时钟源,为 PCLK 或者 LRC(32KHz) 256 分频。如果需要在芯片浅睡眠或深睡眠模式下,自动转换比较模块仍保持工作,则在进入睡眠模式之前,需要将计数时钟源设置为 LRC 的 256 分频,并配置 ADC_CON1 寄存器的 CLKS 选择 A/D 时钟源为 LRC。

配置 ADC_ACPCMP 寄存器的 CMP_MIN,设置自动比较的低阈值,如果 ADC_ACPMEAN 寄存器的 MEAN DATA 小于等于此阈值,则中断标志 ACPMINIF 置 1。

配置 ADC_ACPCMP 寄存器的 CMP_MAX, 设置自动比较的高阈值,如果 ADC ACPMEAN 寄存器的 MEAN DATA 大于等于此阈值,则中断标志 ACPMAXIF置1。

启动一次 A/D 自动转换例程

LDR LDR STR	R0, = ADC_VREFCON R1, =0X07 R1, [R0]	;使能 VREF_EN 与 IREF_EN,选择 2.6V
LDR	R0, =ADC_CON1	; A/D 时钟源选择 PCLK 的 32 分频,选择内部 ;参考电压 VREF 2.6V 为正向参考电压, ;VREF BUF 使能,选择硬件控制采样,VCM ;BUF 使能且为高速模式,AD 转换高速使能
LDR	R1, =0X03005905	
STR	R1, [R0]	
LDR	R0, =ADC_CHS	;选择 AIN3
LDR	R1, =0X03	
STR	R1, [R0]	
LDR	ADC_IE, =0X07	
LDR	ADC_ACPCMP, =0X000100	001 ;设置自动比较的高/低阈值
LDR	ADC_ACPC, =0x0013001F	;ACP 模块工作时钟为 LRC,每次溢出;时间内自动转换 8 次,溢出时间为 32x Tacp

V1.5 230/352

LDR R0, =ADC_CON0 ;使能 ADC 与自动转换比较功能

LDR R1, =0X05

STR R1, [R0]

.....;延时约 100 µs

LDR R0, =ADC_CON0 ;启动 A/D 转换 LDR R1, =0X07

STR R1, [R0]

• • • • • •

5.6.7 特殊功能寄存器

ADC 参考控制寄存器(ADC_VREFCON)

偏移地址: 404

佣份月	型址: 40₁	Н													
复位值	复位值: 00000000_00000000_000000000B														
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	保留														
15	14	13	12	11	10	9	8	7	6	5	4	3	2	11	0
						保留							IREF_EN	VREF_SEL	VREF_EN

_	bit31-3	_	_
			IREF 使能控制位
IREF_EN	bit2	R/W	0: 禁止
			1: 使能
			内部 VREFP 电压选择控制位
VREF_SEL	bit1	R/W	0: 1.8V
			1: 2.6V
			内部 VREFP 使能控制位
VREF_EN	bit0	R/W	0: 禁止
			1: 使能

注 1: ADC 正常工作时,无论正向参考电压选择为 VDD,内部 VREFP 或外部 AVREFP,均必须开启 VREF_EN 与 IREF_EN,否则会导致 ADC 工作异常。

注 2: 寄存器 ADC_VREFCON的 bit31-3为测试保留位,用户需固定写 0,否则可能会导致 ADC 工作异常。

ADC 转换值寄存器(ADC_DR)

偏移地址: 00_H

复位值: 00000000_00000000_00000000_00000000B

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							保	:留							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	保	留							DR<	11:0>					

|--|

		_	
DR<11:0>	bit11-0	1 0	1 人/D 萨斯·生用
יייין אט	טונוו-ט		A/D 转换结果

ADC 控制寄存器 0(ADC_CON0)

偏移地	址: 04 _H														
复位值	夏位值: 00000000_00000000_000000000 _B														
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
								保留							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
						保留							ACP_EN	TRIG	EN

_	bit31-3	_	_
			A/D 自动转换比较功能使能位
ACP_EN	bit2	R/W	0: 关闭
			1: 启动
			A/D 转换状态位
			0: A/D 未进行转换,或 A/D 转换已完成
			(硬件清零,且硬件清零优先)
TRIG	bit1	R/W	1: A/D 转换正在进行,该位置 1 启动 A/D 转换
			SMPS 为 0 时,TRIG 的写操作失效(由硬件根据
			SMPON 软件采样和 ADC 转换过程进行控制),且
			不能将其读出作为 ADC 转换完成的标志
			A/D 转换使能位(ACP_EN 为 1 时,该位无效)
EN	bit0	R/W	0: 禁止
			1: 使能

- 注 1: TRIG 软件只能写 1, 且写 1 后硬件自动清零。
- 注 2:关闭 SMPON 时, TRIG 与 ADC_IF 寄存器的 IF 位均可作为转换完成标志。而开启 SMPON 时,仅 ADC_IF 寄存器的 IF 位可作为转换完成标志。建议无论 SMPON 是否开启,均通过 ADC_IF 寄存器的 IF 位来判断 ADC 是否转换完成。
- 注 3: 在 IREF_EN, VREF_EN, A/D 转换使能位 EN 使能后, ADC 需要先完成自身工作建立,才能得到正确的转 换结果。ADC 电路工作建立方式为,上述 3 个使能控制信号使能后,延时 100 μs 以上(如果无该延时, ADC 使用 VDD 或外部 AVREFP 做参考电压时,还有可能在 VDD 电压低于 3.0V 时,导致芯片工作不稳定),启动 第一次 ADC 转换(TRIG=1),转换结束后,再延时50μs以上,ADC工作建立完成,后续启动ADC转换, 即可得到正确的转换结果。对应用程序来说,在上述3个使能控制信号使能后,第一次ADC转换前和转换后, 分别添加至少 100 μs 和 50 μs 延时,同时因 ADC 建立过程中得到的转换结果与理论值偏差极大且不可预知, 所以在应用程序中需要丢弃 IREF_EN, VREF_EN, A/D 转换使能位 EN 使能后的第一次转换结果。
- 注 4: 因每次 IREF_EN, VREF_EN, A/D 转换使能位 EN 重新使能后,均需要执行上述 ADC 工作建立过程,所以 应用中,在芯片正常运行时不建议关闭上述3个使能控制信号,保持为1,只在进入深睡眠模式前,可以关闭 ADC.

V1.5

232/352

ADC 控制寄存器 1(ADC_CON1)

偏移地址: 08_H

复位值: 00000000_00000100_00010000_00000000B

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
			保留			VCMBUF_HS	VCMBUF_EN		保留			S	T<4:0>		
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
保留	HSE N	SMPON	SMPS	VRBUF_EN	VREFN	VREFI	P<1:0>	保留				CLKS	CLI	KDIV<2	?:0>

_	bit31-26		_
VCMBUF_HS	bit25	R/W	ADC 共模电压 VCM BUF 高速模式使能控制位 制位 0: 保留,仅作测试使用 1: 使能
VCMBUF_EN	bit24	R/W	ADC 共模电压 VCM BUF 使能控制位 0: 禁止 1: 使能
_	bit23-21	_	_
ST<4:0>	bit20-16	R/W	A/D 采样时间选择位(硬件控制有效) 采样时间:ST*2+1 个 Tadclk
_	bit15	_	_
HSEN	bit14	R/W	AD 转换速度控制位 0:保留,仅作测试使用 1:高速
SMPON	bit13	R/W	A/D 采样软件控制位(ACP_EN 为 1 时,该位无效) 0: 关闭 AD 采样 1: 启动 AD 采样
SMPS	bit12	R/W	A/D 采样模式选择位(ACP_EN 为 1 时, 固定为 1) 0: 软件控制 1: 硬件控制
VRBUF_EN	bit11	R/W	VREF BUF 使能位 0:禁止 1:使能
VREFN	bit10	R/W	A/D 负向参考电压选择位 0: 内部地电压 VSS 1: 外部参考电压 AVREFN
VREFP<1:0>	bit9-8	R/W	A/D 正向参考电压选择位 00: 选择芯片工作电压 VDD 01: 选择内部参考电压 VREFP (2.6V 或 1.8V), AVREFP 端口复用作普通 I/O 端口

233/352

			 10: 选择内部参考电压 VREFP(2.6V 或 1.8V), AVREFP 端口输出内部参考 电压 VREF 11: 外部参考电压 AVREFP, 该电压不能 高于 VDD, 不能低于 1.3V。SWD 调 试模式下 AVREFP 不可用
_	bit7-4		_
CLKS	bit3	R/W	A/D 时钟源选择位 0: PCLK 1: LRC(32KHz)
CLKDIV<2:0>	bit2-0	R/W	A/D 时钟源预分频选择位 000 = 1:1 001 = 1:2 010 = 1:4 011 = 1:8 100 = 1:16 101 = 1:32 110 = 1:64 111 = 1:256

- 注 1: 选择内部参考电压 VREF 2.6V 或 1.8V 作为 ADC 正向参考电压时, VRBUF_EN 必须置 1;
- 注 2: ADC 工作时 VCMBUF_HS, VCMBUF_EN, HSEN 均必须置 1;
- 注 3: ADC 使用 VDD (VREFP=2'b00),或外部参考电压(VREFP=2'b11),作为参考电压时,最大转换时钟频率 为 2MHz,使用内部参考电压作为参考电压时(VREFP=2'b01或 2'b10),最大转换时钟频率为 1MHz;
- 注 4: 当使用外部参考电压时,参考电压不能低于 1.3V, 否则会导致 ADC 工作异常。

ADC 通道选择寄存器(ADC_CHS)

偏移地	偏移地址: 0C _H														
复位值	复位值: 00000000_00000000_00000001_00000000 _B														
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	保留														
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
			保留				VDD5_FLAG_EN		保留			C	CHS<4:0)>	

_	bit31-9	_	_
VDD5_FLAG_EN	bit8	R/W	VDD 检测控制 1: 使能 VDD 检测(仅用于内部测试,禁止在芯片应用时设置为 1) 0: 屏蔽 VDD 检测(在芯片应用时需软件固定设置为 0)
_	bit7-5	_	_
CHS<4:0>	bit4-0	R/W	A/D 模拟通道选择位

V1.5 234/352

00000: 通道 0 (AIN0)
00001: 通道 1 (AIN1)
00010: 通道 2 (AIN2)
00011: 通道 3 (AIN3)
00100: 通道 4(AIN4)
00101: 通道 5 (AIN5)
00110: 通道 6 (AIN6)
00111: 通道 7 (AIN7)
01000: 通道 8 (AIN8)
01001: 通道 9 (AIN9)
01010: 通道 10(AIN10)
01011: 通道 11(AIN11)
01100: 通道 12 (AIN12)
01101: 通道 13 (AIN13)
01110: 通道 14 (AIN14),不可用
01111: 通道 15 (AIN15),不可用
其它:通道关闭

ADC 中断使能寄存器(ADC_IE)

偏移地	也址:10) _H													
复位值	夏位值: 00000000_00000000_000000000 _B														
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
									保留						
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
					保	留						ACPOVIE	ACPMAXIE	ACPMINIE	IE

_	bit31-4	_	_
			ADC 自动转换溢出中断使能位
ACPOVIE	bit3	R/W	0: 禁止
			1: 使能
			ADC 自动转换高阈值超出中断使能位
ACPMAXIE	bit2	R/W	0: 禁止
			1: 使能
			ADC 自动转换低阈值超出中断使能位
ACPMINIE	bit1	R/W	0: 禁止
			1: 使能
			ADC 中断使能位
IE	bit0	R/W	0: 禁止
			1: 使能

V1.5 235/352

ADC 中断标志寄存器(ADC_IF)

偏移地址: 14_H

复位值: 00000000_00000000_00000000_00000000_B

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
									保留						
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
					保	留						ACPOVIF	ACPMAXIF	ACPMINIF	IF

_	bit31-4	_	_
ACPOVIF	bit3	R/W	ADC 自动转换溢出中断标志位 0: 自动转换的溢出时间未到 1: 自动转换的溢出时间已到(由硬件置 1, 软件清除) 软件写 1 清除标志位,写 0 无效
ACPMAXIF	bit2	R/W	ADC 自动转换高阈值超出中断标志位 0:均值结果没有达到高阈值 1:均值结果大于或等于高阈值(由硬件置 1, 软件清除) 软件写 1 清除标志位,写 0 无效
ACPMINIF	bit1	R/W	ADC 自动转换低阈值超出中断标志位 0:均值结果没有到达最低阈值 1:均值结果小于或等于低阈值(由硬件置 1, 软件清除) 软件写 1 清除标志位,写 0 无效
IF	bit0	R/W	ADC 中断标志位 0: 正在进行转换 1: A/D 转换完成(由硬件置 1, 软件清除) 软件写 1 清除标志位, 写 0 无效

注 1: ADC 中断禁止时,如果满足条件仍会置起对应的中断标志位,只是不会产生中断请求。

注 2: 对 ADC_IF 寄存器中的各中断标志位,写 0 无效,写 1 才能清除标志位;读操作时,读取的值为 1 表示有中断发生。

ADC 自动转换比较控制寄存器(ADC_ACPC)

偏移地址: 28_H

复位值: 00000000_00000000_00000000_00000000B 23 28 27 26 24 22 20 17 CLKS TIMES<1:0> 保留 12 10 3 0 15 14 13 11 6 5 OVFL_TIME<11:0> 保留

V1.5 236/352

_	bit31-21	_	_
CLKS	bit20	R/W	ACP 溢出计数的时钟源选择位 0: FPCLK/256(PCLK 的 256 分频) 1: FLRC/256(LRC 时钟的 256 分频)
_	bit19-18	_	_
TIMES<1:0>	bit17-16	R/W	自 动 转 换 比 较 次 数 选 择 位 (基 于 由 OVFL_TIME 设定的时间段内) 00: 1 次 01: 2 次 10: 4 次 11: 8 次
_	bit15-12	_	_
OVFL_TIME<11:0>	bit11-0	R/W	每次自动转换比较的溢出时间,可配置范围为 0~9C3 _H ,计数时钟周期为 Tacp,分别对应如下溢出时间: 0: 1 xTacp 1: 2 x Tacp 2: 3 x Tacp 9C3 _H : 2500 x Tacp Tacp 为由 CLKS 选择的 ACP 溢出计数的时钟源周期

注:配置 OVFL_TIME 的值必须大于一次 A/D 采样与转换时间。

ADC 自动转换比较阈值寄存器(ADC_ACPCMP)

偏移地址: 30_H

复位值	: 00001	111_111	11111_00	000000_	_0000000	00 _B									
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	保留 CMP_MAX<11:0>														
		40	40	44	4.0										

 15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	保	留							CMP_M	IN<11:0>	>				

_	bit31-28	_	_
CMP_MAX<11:0>	bit 27-16	R/W	自动比较高阈值
_	bit15-12	_	_
CMP_MIN<11:0>	bit 11-0	R/W	自动比较低阈值

V1.5 237/352

ADC 自动转换数据寄存器(ADC_ACPMEAN)

偏移地址: 34_H

复位值: 00000000_00000000_000000000_B

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							保	·留							

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	保	留						N	1EAN_DA)>				

_	bit31-12	_	_
MEAN_DATA<11:0>	bit 11-0	R	自动转换结果的均值

5.7 实时时钟(RTC)

5.7.1 概述

- ◇ 仅 POR 上电复位有效,支持程序写保护,有效避免系统干扰对时钟造成的影响
- ◇ 采用外部 32.768KHz 晶体振荡器作为 RTC 精确计时的时钟源; 如果应用系统对 RTC 计时精度要求不高, 还可选用内部 LRC 作为时钟源; 如果应用系统将 RTC 作为普通 计数器使用, 还可选用 PCLK 或 PCLK 的 256 分频作为时钟源
- ◇ 可进行高精度数字校正,提供高精度计时
- ◇ 时钟调校提供两种时间精度,调校范围为±384ppm(或±128ppm),可实现最大时间 精度为±1.5 ppm(或±0.5ppm)
- ◇ 时间计数 (实现小时、分钟和秒)和日历计数 (实现年、月、日和星期), BCD 格式
- ◇ 提供 5 个可编程定时中断
- ◇ 提供2个可编程日历闹钟
- ◇ 提供一路可配置时钟输出
- ◇ 自动闰年识别,有效期到 2099 年
- ◇ 12 小时和 24 小时模式设置可选
- ◇ 低功耗设计:工作电压 VDD=5.0V 时模块工作电流典型值为 0.5µA

5.7.2 RTC写保护

为避免程序的异常运行对 RTC 模块的误操作,RTC 写保护寄存器 RTC_WP 用于阻止程序对 RTC 模块其它寄存器的误写(不包括 RTC_WP 寄存器本身)。

RTC_WP 寄存器为虚拟寄存器。要对 RTC 模块其它寄存器进行写操作时,需先对 RTC_WP 寄存器写 0x55AAAA55,之后可对 RTC 模块其它寄存器进行连续写操作。对 RTC_WP 寄存器写入其他值重新进入写保护状态,写保护状态下对其他寄存器进行的写操作将被忽略。

可通过读 RTC_WP 寄存器确认 RTC 模块是否处于写保护状态,读出值为 0x55AAAA55,表示当前可对 RTC 模块其它寄存器进行写操作;读出值为 0x00000000 表示 RTC 模块处于写保护状态。除 0x55AAAA55 和 0x00000000 以外,RTC WP 寄存器无其它读出值。

5.7.3 时间日期设置

由于 APB 总线时钟与 RTC 时间计数器时钟异步,因此 RTC 时间计数器不能直接读写,只能通过缓冲器进行读写。RTC 时分秒寄存器 RTC_HMS 和 RTC 年月日周寄存器 RTC_YMDW 用于 RTC 时间计数器的写入和读取。这两个寄存器只是读写缓冲器,而不是时间计数器本身。读时间计数器的操作步骤如下:

- 1) 配置读写选择位 TMWR=0, 选择时间计数器读操作;
- 2) 配置读写触发位 TMUP=1, 触发读操作;
- 3) 读操作完成后,时间计数器的值被分别读出到 RTC_HMS 和 RTC_YMDW,并且 TMUP 位自动清零。

V1.5 239/352

写时间计数器的操作步骤如下(复位或上一次时间计数器读/写操作完成后):

- 1) 配置 12/24 小时模式选择位 HSWI;
- 2) 写入设置值到 RTC HMS 和/或 RTC YMDW 寄存器;
- 3) 配置读写选择位 TMWR=1, 选择时间计数器写操作;
- 4) 配置读写触发位 TMUP=1, 触发写操作;
- 5) 写操作完成后,RTC_HMS 和 RTC_YMDW 寄存器更新过的设置值被写入时间计数器,并且 TMUP 位自动清零。
- 注 1: 写时间计数器操作是将从复位或上一次读操作完成后,更新过的 RTC_HMS 和/或 RTC_YMDW 寄存器的内容写入相应时间计数器,而对应于未更新字段的时间计数器不受写入影响。
- 注 2: 当 TMUP 位为 1 时,可通过将 TMWR 清零提前中止当前的写操作。被中止的写操作结果不确定。

时间和日期寄存器数据格式采用 BCD 编码。秒计数范围从 00 到 59,进位到分钟后从 59 变为 00。分钟计数范围从 00 到 59,进位到小时后从 59 变为 00。小时计数范围根据控制位 RTCHSWI 的设置选择 12/24 小时模式,进位后从 PM11 到 AM12 或 AM11 到 PM12,或 23 到 00。

星期计数器为循环移位寄存器,设置时对相应星期位写1,其它位均写0。

日计数按照每月最后一天加1进位到下月,日计数范围按月分为:

一、三、五、七、八、十、十二月从1到31;

四、六、九、十一月从1到30;

二月(普通年份)从1到28;二月(闰年)从1到29;

月计数范围从 1 到 12, 进位到年后从 12 变为 1。

年计数范围从 00 到 99 (00, 04, 08, ..., 92, 96 为闰年), 99 后不再进位到 00。

12/24 小时模式对照表如下:

24 小时模式	12 小时模式	24 小时模式	12 小时模式
00	12 (AM12)	12	32 (PM12)
01	01 (AM1)	13	21 (PM1)
02	02 (AM2)	14	22 (PM2)
03	03 (AM3)	15	23 (PM3)
04	04 (AM4)	16	24 (PM4)
05	05 (AM5)	17	25 (PM5)
06	06 (AM6)	18	26 (PM6)
07	07 (AM7)	19	27 (PM7)
08	08 (AM8)	20	28 (PM8)
09	09 (AM9)	21	29 (PM9)
10	10 (AM10)	22	30 (PM10)
11	11 (AM11)	23	31 (PM11)

表 5-3 12/24 小时模式对照表

V1.5 240/352

5.7.4 RTC中断源

RTC 模块共有 7 个中断源,即:

- ◇ 周闹钟中断 WAFG
- ◇ 日闹钟中断 DAFG
- ◇ 5 个周期中断月、日、时、分、秒中断

每个中断源都有独立的使能位,使能位影响该中断是否产生 IRQ 中断请求,而不影响中断功能。即关闭相应中断使能,标志位仍可用于相应功能查询。当有多个中断使能时,各中断经过"或"逻辑产生 IRQ 中断请求。即任何一个被使能的中断产生中断事件时,均产生IRQ 中断请求,且只有将所有的产生中断事件的中断标志清零后,IRQ 中断请求才解除。

5.7.5 RTC计时功能

如果应用系统要求 RTC 精确计时,则需要采用外部 32.768KHz 晶体振荡器作为 RTC 计时的时钟源。此时外部时钟管脚(OSCxI,OSCxO)外接 32.768KHz 晶体振荡器,并对配置字和控制寄存器进行如下设置:

- 1) 通过配置字 CFG_OSCMD 设置 XTAL 振荡器为低速振荡器;
- 2) 通过软件由寄存器 SCU_SCLKENO 的 CLK_SEL<1:0>位来选择系统时钟源;
- 3) 设置寄存器 SCU_SCLKEN1 的控制位 XTAL_EN=1,使能外部时钟振荡器。
- 4) 设置寄存器 RTC_CON 的 CLKS<1:0>=00,将 RTC 时钟源选择为外部 32.768KHz 振荡器时钟源。

在芯片深度睡眠模式下,如果需要 RTC 仍使用外部 32.768KHz 晶体振荡器计时工作,则需要设置寄存器 SCU_WAKEUPTIME 的 MOSC_EN=1,使 XTAL 时钟在芯片深度睡眠模式下保持工作。

如果应用系统对 RTC 计时精度要求不高,则还可选用内部 LRC (频率约 32KHz) 作为时钟源。

5.7.6 特殊功能寄存器

RTC 🔄	保护寄石	字器(RT	C_WP)												
偏移地	址: 20 _H														
复位值	: 00000	000_000	00000_	0000000	0_0000	0000 _B									
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	WP<31:16>														
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
							WP<	15:0>							
								_			東央写信				
V	WP<31:0> bit31-0 R/W							_			模块可			(该寄	存器
							写入	.其他個	[可恢复	夏到写	保护状	(态)			

注 1: RTC_WP 保护的寄存器为 RTC_CON, RTC_CAL, RTC_WA, RTC_DA, RTC_HMS, RTC_YMDW, RTC_IE,

V1.5 241/352

 $\mathsf{RTC}_{\mathsf{IF}}.$

RTC 控制寄存器(RTC_CON)

偏移地址: 00_H

复位值: 00000000_00000000_00000000_10000000B

31	30	29	28	27	26	26 25 24		23	22	21	21 20		18	17	16
保留															
15	14	13	12	11	10	9	8	7	6	5	5 4		2	1	0
			保	留				PON	XST	CLKS	<1:0>	保留	HSWI	TMWR	TMUP

_	bit31-8	_	_
			RTC 上电复位标志位(软件只能将该位清零)
PON	bit7	R/W	0: 实时时钟正常工作
FON	Dit	FX/VV	1: 监测到 RTC 上电复位(必须软件清零后, RTC
			才能开始工作)
			振荡器停振监测标志位
XST	bit6	R	0: 振荡器持续工作正常
			1: 振荡器有停振现象发生
			RTC 时钟源选择位(必须在写时间数据前设置)
		R/W	00: 32.768 KHz 振荡器时钟源(RTC 精确计时)
CLKS<1:0>	bit5-4		01: LRC 时钟源(RTC 非精确计时)
			10: PCLK/256 (RTC 用作普通计数器)
			11: PCLK(RTC 用作普通计数器)
_	bit3	_	_
			12/24 小时模式选择位(必须在写时间数据前设
HSWI	bit2	R/W	置)
110001	DILL	1000	0: 12 小时模式
			1: 24 小时模式
			时间计数器读写选择位
TMWR	bit1	R/W	0: 时间计数器读出操作
			1: 时间计数器写入操作
			时间计数器读写触发位(程序只能写 1,读写完
TMUP	bit0	R/W	成后自动清零)
I	Dito	I R/W I	0: 时间计数器读写操作已完成
			1: 时间计数器正在进行读写操作

- 注 1: RTC 模块上电复位后一直处于复位状态,只有将 PON 位清零后,RTC 才进入工作状态,才能对 RTC 控制寄存器进行写操作。
- 注 2: 为保证精度,建议 CLKS 值设置为 00,即选用外部 32.768KHz 晶振;对于低精度要求的运用,可选用 LRC 时钟源。只有在 RTC 用作普通的 Timer 时,可将 CLKS 设置为 10 或 11。

V1.5 242/352

RTC 调校寄存器(RTC_CAL)

偏移地址: 04_H

复位值: 00000000_00000000_00000000_000000000B

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							保	留							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	保留 CLKC COCR<2:0>					DEV				CALF	<7:0>				

-			
	bit31-13		_
			RTC 输出脉冲端口使能位
CLKC	bit12	R/W	0: 禁止
			1: 使能(端口需复用为 RTCO,输出脉冲)
			RTC 输出脉冲频率选择位
			000: 32KHz
			001: 1024Hz
COCR<2:0>	bit11-9	R/W	010: 32Hz
			011: 1Hz
			100:校正后 1Hz 时钟输出
			111~101: 保留
			调校模式选择位
DEV	h:+0	R/W	0: 每20秒调校一次(秒数字分别为00、20、
DEV	bit8	K/VV	40 时)
			1:每60秒调校一次(秒数字为00时)
CALF<7:0>	bit7-0	R/W	RTC 调校值

注 1: 如果 CALF<6:1>=000000,则调校增/减量为 0;

如果 CALF<7>=0,则递增调校,增量为((CALF<6:0>)-1) x 2;

如果 CALF<7>=1,则递减调校,减量为((~CALF<6:0>) + 1) x 2。

注 2: 如果 DEV=0,则调校时间步长为 3.051ppm,调校范围为-384ppm~384ppm,最高时间精度为±1.5ppm; 如果 DEV=1,则调校时间步长为 1.017ppm,调校范围为-128ppm~128ppm,最高时间精度为±0.5ppm。

RTC 周闹钟寄存器(RTC_WA)

偏移地址: 08_H

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16		
				保旨	Ŷ				WW<6:0>								
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0		
保	:留	WH<5:0>						保留				WM<6:0>					

bit31-23	_
----------	---

V1.5 243/352

WW<6:0>	bit22~16	R/W	周闹钟位 WW<6>: 周六闹钟位 WW<5>: 周五闹钟位 WW<4>: 周四闹钟位 WW<3>: 周三闹钟位 WW<2>: 周二闹钟位 WW<1>: 周一闹钟位 WW<1>: 周一闹钟位
_	bit15-14	_	
WH<5:0>	bit13~8	R/W	小时(BCD 码)位 WH<5>: 24 小时模式: 20 小时位
_	bit7		_
WM<6:0>	bit6~0	R/W	分钟(BCD 码)位 WM<6>: 40 分钟位 WM<5>: 20 分钟位 WM<4>: 10 分钟位 WM<3>: 8 分钟位 WM<2>: 4 分钟位 WM<1>: 2 分钟位 WM<0>: 1 分钟位

RTC 日闹钟寄存器(RTC_DA)

偏移地址: 0CH

DHH 13	7.46.41.;	UCH	н												
复位	夏位值: xxxxxxxx_xxxxxxxxx_xxxxxxxx_xxxxxxxxxx														
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
								保留							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
保	留			DH	<5:0>			保留				DM<6:0>			
, , , , , , , , , , , , , , , , , , ,	_							, , , , , , , ,							

_	bit31-14	—	
			小时(BCD 码)位
			DH<5>: 24 小时模式: 20 小时位
DH<5:0>	bit13~8	R/W	12 小时模式: 1 代表 pm; 0 代表 am
D113.02	DIC13 *0	IVV	DH<4>: 10 小时位
			DH<3>: 8 小时位
			DH<2>: 4 小时位

V1.5 244/352

			DH<1>: 2 小时位
			DH<0>: 1 小时位
_	bit7		_
			分钟(BCD 码)位
			DM<6>: 40 分钟位
			DM<5>: 20 分钟位
DM<6:0>	bit6~0	R/W	DM<4>: 10 分钟位
DIVINO.U>	טונס~ט		DM<3>: 8 分钟位
			DM<2>: 4 分钟位
			DM<1>: 2 分钟位
			DM<0>: 1 分钟位

RTC 时分秒寄存器(RTC_HMS)

偏移地址: 10_H

31	30	29	28	27	26 保留	25	24	23	22	21	20	19 HOUF	18 R<5:0>	17	16
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
保	:留	MIN<6:0>						保留				SEC<6:0>			

_	bit31-22	_	_
HOUR<5:0>	bit21~16	R/W	小时(BCD 码)位 HOUR<5>: 24 小时模式: 20 小时位
_	bit15	_	_
MIN<6:0>	bit14~8	R/W	分钟(BCD 码)位 MIN<6>: 40 分钟位 MIN<5>: 20 分钟位 MIN<4>: 10 分钟位 MIN<3>: 8 分钟位 MIN<2>: 4 分钟位 MIN<1>: 2 分钟位 MIN<0>: 1 分钟位
_	bit7	_	_

			秒(BCD 码)位
			SEC<6>: 40 秒位
			SEC<5>: 20 秒位
SEC<6:0>	bit6~0	R/W	SEC<4>: 10 秒位
SEC<0.0>	טונס~ט	FX/VV	SEC<3>: 8 秒位
			SEC<2>: 4 秒位
			SEC<1>: 2 秒位
			SEC<0>: 1秒位

注:寄存器 RTC_HMS 在进行写操作时,只支持字写入方式,不支持字节和半字写入方式。

RTC 年月日周寄存器(RTC_YMDW)

偏移地	地: 1	4 _H													
复位值	i:xxx	xxxxx_x	xxxxxx	_xxxxx	xxx_xx	XXXXXX _B									
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
			YEAF	R<7:0>					保留 MON<4:0>						
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
保留 DAY<5:0>							保留				WEEK<	<6:0>			

			年(BCD 码)位
			YEAR<7>: 80 年位
			YEAR<6>: 40 年位
			YEAR<5>: 20 年位
YEAR<7:0>	bit31~24	R/W	YEAR<4>: 10 年位
			YEAR<3>: 8 年位
			YEAR<2>: 4 年位
			YEAR<1>: 2 年位
			YEAR<0>: 1 年位
_	bit23-21	_	_
			月(BCD 码)位
	h::00 40	R/W	MON<4>: 10 月位
MON<4:0>			MON<3>: 8月位
IVIOIN<4.0>	bit20~16		MON<2>: 4月位
			MON<1>: 2月位
			MON<0>: 1月位
_	bit15-14	_	_
			日(BCD 码)位
			DAY<5>: 20 日位
DAY<5:0>			DAY<4>: 10 日位
	bit13~8	R/W	DAY<3>: 8 日位
			DAY<2>: 4 日位
			DAY<1>: 2 日位
			DAY<0>: 1 日位

_	bit7	_	_
			星期(BCD 码)位
WEEK<6:0>			WEEK<6>: 星期六位
	bit6~0		WEEK<5>: 星期五位
		R/W	WEEK<4>: 星期四位
VVEEK<0.0>		FX/VV	WEEK<3>: 星期三位
			WEEK<2>: 星期二位
			WEEK<1>: 星期一位
			WEEK<0>: 星期日位

注:寄存器 RTC_YMDW 在进行写操作时,只支持字写入方式,不支持字节和半字写入方式。

RTO	RTC 中断使能寄存器(RTC_IE)														
偏移	偏移地址: 18 _H														
复位	复位值: 00000000_00000000_000000000B														
31	31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16														
									保	:留					
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		保	留			WALE	DALE		保留		MONIE	DAYIE	HORIE	MINIE	SCDIE

_	bit31-10	_	I <i>—</i>
			周闹钟使能位
WALE	bit9	R/W	0: 禁止
			1: 使能
			日闹钟使能位
DALE	bit8	R/W	0: 禁止
			1: 使能
_	bit7-5	_	_
			月中断使能位
MONIE	bit4	R/W	0: 禁止
			1: 使能
			日中断使能位
DAYIE	bit3	R/W	0: 禁止
			1: 使能
			时中断使能位
HORIE	bit2	R/W	0: 禁止
			1: 使能
		544	分中断使能位
MINIE	bit1	R/W	0: 禁止
			1: 使能
CODIE	h:40	DAA	秒中断使能位
SCDIE	bit0	R/W	0: 禁止
			1: 使能

V1.5 247/352

RTC 中断标志寄存器(RTC_IF)

偏移地址: 1C_H

复位值: 00000000_00000000_000000000B

 31
 30
 29
 28
 27
 26
 25
 24
 23
 22
 21
 20
 19
 18
 17
 16

15 14 13 12 11 9 4 3 2 0 10 8 6 WAFG DAFG 保留 MONIF DAYIF HORIF MINIF SCDIF 保留

_	bit31-10		_
			周闹钟标志位
WAFG	h-:40	R/W	0: 闹钟事件不匹配
WAFG	bit9	R/VV	1: 闹钟事件匹配
			软件写 1 清除标志位,写 0 无效
			日闹钟标志位
DAFG	bit8	R/W	0: 闹钟事件不匹配
DAIG	Dito	17/77	1: 闹钟事件匹配
			软件写 1 清除标志位,写 0 无效
_	bit7-5	_	_
			月中断标志位(中断周期为每月第一天 00 小时 00
			分钟 00 秒)
MONIF	bit4	R/W	0: 未产生月中断
			1: 产生月中断
			软件写 1 清除标志位,写 0 无效
	bit3	R/W	日中断标志位(中断周期为每天)
DAYIF			0: 未产生日中断
			1: 产生日中断
			软件写 1 清除标志位,写 0 无效
			时中断标志位 (中断周期为每小时)
HORIF	bit2	R/W	0: 未产生小时中断
			1: 产生小时中断
			软件写 1 清除标志位,写 0 无效
			分中断标志位 (中断周期为每分钟)
MINIF	bit1	R/W	0: 未产生分钟中断
			1: 产生分钟中断
			软件写 1 清除标志位,写 0 无效
			秒中断标志位 (中断周期为每秒)
SCDIF	bit0	R/W	0: 未产生秒中断
			1: 产生秒中断
			软件写 1 清除标志位,写 0 无效

注:对 RTC_IF 寄存器中的各中断标志位,写 0 无效,写 1 才能清除标志位;读操作时,读取的值为 1 表示有中断发生。

V1.5 248/352

5.8 看门狗定时器 (WDT)

5.8.1 概述

当配置字 CFG_WORD1 配置为"硬件看门狗使能"时,即 CFG_WDTEN 位配置为 1,软件不可配置 WDT_LOAD 寄存器。上电复位后看门狗立即启动(WDT 使用 32KHz LRC时钟计数),WDT 载入 CFG_WORD1 配置字中 WDTRL 参数对应的计数初值的 1/4,并进行递减计数,计数到 0 时,窗口计数器加"1",并在下一计数时钟到来时,计数器再次载入WDTRL参数对应的计数初值的 1/4,并继续递减计数。当窗口计数器计数到 2 时(WDT累计计数为 WDTRL的一半),WDT产生中断标志。当窗口计数器计数到 4(WDT累计计数等于 WDTRL)之前,没有在相应的喂狗窗口期进行喂狗动作,WDT模块将产生复位信号。软件只能读写 WDT_LOCK、写 WDT_INTCLR,其它 WDT 相关特殊功能寄存器不再可写,只能读取,读 WDT_LOAD 得到的值为"WDTRL 参数对应的计数初值",读 WDT CON 将返回"0x0000 000F"。

当配置字 CFG_WORD1 配置为"硬件看门狗禁止"时,即 CFG_WDTEN 位配置为 0,上电看门狗不启动,但软件可配置看门狗使能,且软件可配置 WDT_LOAD 寄存器。当配置为"软件看门狗使能"时,即软件配置 WDT_CON 寄存器的 WDTEN 为 1,WDT 计数器载入 WDT_LOAD 寄存器值的 1/4,开始递减计数,当计数到 0 时,窗口计数器加"1",并在下一个计数时钟到来时,计数器再次载入 WDT_LOAD 寄存器值的 1/4,并继续递减计数。当窗口计数器计数到 2 时(WDT 累计计数为 WDT_LOAD 的一半),WDT 产生中断标志。当窗口计数器计数到 4(WDT 累计计数等于 WDT_LOAD)之前,没有在相应的喂狗窗口期进行喂狗动作,则 WDT 模块将产生复位信号。配置 CLKS,可以选择计数时钟源;配置 WDT_LOAD 寄存器,可设置计数初值;读取 WDT_VALUE,可得到 WDT 当前计数值。写入装载值寄存器 WDT_LOAD 时,计数器当前值寄存器被清零。

WDT 模块支持寄存器写保护,配置寄存器 WDT_LOCK=0x1ACCE551,可去除 WDT 寄存器的写保护状态,进行被保护寄存器的写操作,否则无法对被保护寄存器写入。

- 注 1: 在 SWD 调试模式下,需要禁止 WDT,否则在调试过程中,WDT 会始终保持工作,可能会产生计数溢出复位,导致芯片调试异常。
- 注 2: 若使能了 WDT, 进入深睡眠模式后, WDT 复位无法唤醒系统, 因此必须使能 WDT 中断, 通过 WDT 中断唤醒系统。

5.8.2 特殊功能寄存器

WDT 计数器装载值寄存器	(WDT	LOAD)
---------------	------	-------

偏移地址: 00_H

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							LOAD	<31:16>							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
							LOAD)<15:0>							

			WDT 计数器重载值
LOAD<31:0>	bit31-0	W	计数范围 0x0000_0001~0xFFFF_FFFF。如果为 0,WDT 不计
			数。

WDT 计数器当前值寄存器(WDT_VALUE)

偏移地址: 04_H

复位值: 11111111_1111111_11111111_1111111_B

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
VALUE<31:16>															
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
					•	•	VALUE	<15:0>		•	•				_

VALUE<31:0>	bit31-0	R	WDT 计数器当前值
			读取时返回 WDT 计数器的当前计数值

WDT 控制寄存器(WDT_CON)

偏移地址: 08_H

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							,	保留							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
					保	留						CLKS	RSTEN	ΙE	EN

_	bit31-4	_	_
			WDT 计数时钟选择位
CLKS	bit3	R/W	0: PCLK
			1: LRC 时钟(约 32KHz)
			WDT 复位使能位
RSTEN	RSTEN bit2 R/W		0: 禁止
			1: 使能, WDT 计数到 0 时,产生复位信号,将芯片复位

V1.5 250/352

			WDT 中断使能位					
ΙE	bit1	R/W	0: 禁止					
			1: 使能, WDT 计数到 0 时,产生中断标志					
			WDT 模块使能位					
EN	bit0	R/W	0: 禁止					
			1: 使能					

注: WDT_CON 寄存器中的各个控制位,仅在配置字 CFG_WORD1 的配置位 CFG_WDTEN=0 时才有效。

WDT 申	断标志	清除寄存	器(WD	T_INTCL	R)										
偏移地	址: 0С _н														
复位值	: 00000	000_000	000000_0	0000000	0_00000	000 _B									
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	1
							INTCLR	<31:16>							

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

INTCLR<31:16>

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

INTCLR<15:0>

			WDT 中断标志清零位
INTCLR<31:0>	bit31-0	W	对 WDT_INTCLR 寄存器进行任意写操作,WDT 中断标志位
			均被清零,计数器重载 WDT_LOAD 寄存器值,继续递减计数

WDT 中断标志寄存器(WDT_RIS)

偏移地址: 10_H

复位值	: 00000	000_000	00000_0	0000000	0_00000	000 _B									
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							(l	呆留							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
							保留								WDTIF

_	bit31-1	_	
		R	WDT 中断标志位
WOTE	OTIF bit0		0: 未产生中断
VVDTIF			1: WDT 计数器计数到 0,产生中断
			写寄存器 WDT_INTCLR,可清除 WDT 中断标志位

V1.5 251/352

WDT 访问使能寄存器(WDT_LOCK)

偏移地址: 00_H

复位值: 00000000_00000000_000000000_B

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							佳	R 留							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
							保留								LOCK

_	bit31-1	W	对 WDT_LOCK<31:0>写 0x1ACCE551 时,位 LOCK 为 0; 写其它值时位 LOCK 为 1
LOCK	bit0	R/W	WDT 寄存器保护状态位 0: WDT 寄存器处于未保护状态 1: WDT 寄存器处于保护状态 对 WDT_LOCK 寄存器写入 0x1ACCE551,被保护的寄存器处于未保护状态;写入其它值,处于保护状态

注 1: WDT_LOCK 寄存器为只写 32 位寄存器,其中仅 LOCK 位可读,该寄存器必须使用字操作访问方式。

注 2: WDT_LOCK 保护的寄存器为 WDT_LOAD, WDT_CON, WDT_INTCLR。

第 6 章 RF收发器—芯片状态控制

RF 收发器各工作模式之间的切换控制如下图所示:

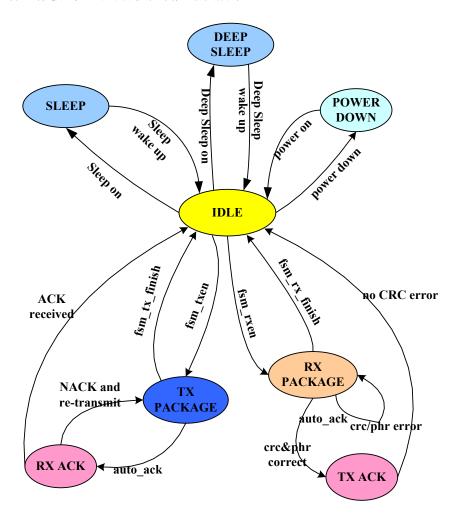


图 6-1 RF 收发器状态控制示意图

6. 1 POWER DOWN

在 POWER DOWN 状态下,整个芯片全部掉电,芯片功耗约为 100nA。

通过设置 PDN 输入引脚为高电平进入 POWER DOWN 状态,设置 PDN 输入引脚为低电平,芯片从 POWER DOWN 状态恢复至 IDLE 状态,恢复时间约 2ms。

芯片从 POWER DOWN 恢复至 IDLE 状态,全芯片被复位,寄存器恢复默认值。通过读取 CHIPRDY_INT 中断标志确定芯片是否恢复至 IDLE 状态并且晶振稳定可进行收发。

6. 2 DEEP SLEEP

在 DEEP SLEEP 状态下,数字的低功耗 LDO 工作,仅提供数字电路的状态寄存器供电,其

余数字电路处于掉电状态,芯片功耗约为 3 µ A。

在 WDT_EN(0x20) 不使能的情况下,通过设置 SLEEP_ON(0x1C) 寄存器为'1', 芯片进入 DEEP SLEEP 状态。设置 SLEEP_ON 寄存器为'0', 芯片从 DEEP SLEEP 状态唤醒,进入 IDLE 状态。

6. 3 SLEEP (RC)

在 SLEEP 状态下,低功耗的数字 LDO 给整个数字电路供电,芯片功耗 3.5 μ A。

在 WDT_EN 使能的情况下,通过设置 SLEEP_ON 寄存器为'1', 芯片进入 SLEEP(RC)状态。可通过设置 SLEEP_ON 寄存器为'0'、RC 定时或外部 GPIO 输入中断三种方式将芯片唤醒,唤醒后芯片进入 IDLE 状态。

芯片从 DEEP SLEEP/SLEEP 状态恢复至 IDLE 状态,芯片除寄存器外全部被复位。通过读取 CHIPRDY_INT 中断标志确定芯片是否恢复至 IDLE 状态并且晶振稳定可进行收发。

注 1: 在 SLEEP(RC)或 DEEP SLEEP 状态下 SPI 可访问寄存器,但不可访问 FIFO 或进行中断标志位清'0'操作。

注 2: 配置芯片进入 SLEEP(RC)或 DEEP SLEEP 状态之前,需关闭收发使能 DBUS_TXEN/DBUS_RXEN。

6.4 IDLE

在 IDLE 状态下,数字主 LDO 使能,晶振电路和晶振电路 BUFFER 电路都使能,芯片功耗小于 2mA。

6. 5 TX

当使能芯片 DBUS_TXEN (0x01) 并且发送 FIFO 处于有效状态后,芯片进入 TX 发送状态。发送完成后,芯片进入 IDLE 状态。

6.6 RX

当使能芯片 DBUS_RXEN (0x01) 并且接收 FIFO 处于有效状态后,芯片进入 RX 接收状态。接收完成后,芯片进入 IDLE 状态。

6.7 芯片状态切换说明

芯片从上电、POWER DOWN 模式或从 SLEEP、DEEP SLEEP 模式恢复进入发送或接收模式示意图如图 6-2 与图 6-3 所示。

若芯片直接从 IDLE 状态进入发送或接收状态,可跳过芯片时钟稳定时间阶段。

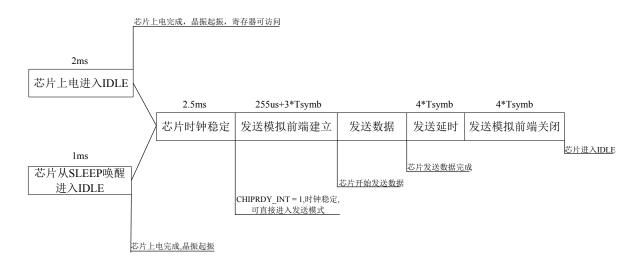


图 6-2 芯片上电进入发送模式示意图

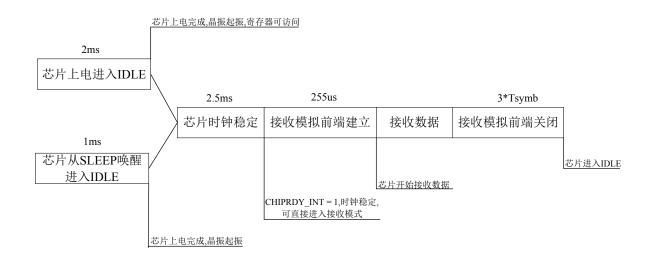


图 6-3 芯片上电进入接收模式示意图

注: Tsymb 为数据速率周期,如数据数率为 10kbps,则 Tsymb = $100 \mu s$,以下相同。

第7章 RF收发器—帧结构

HW3181 芯片支持增强型帧结构与直接 FIFO 帧结构,可通过 PACK_LENGTH_EN 寄存器配置。增强型帧结构可兼容国家电网电力用户用电信息采集系统通信协议帧结构,并支持自动 ACK 功能;直接 FIFO 帧结构配置灵活,可兼容增强型帧结构、802.15.4g 协议等帧结构。

7.1 增强型帧结构

设置 PACK_LENGTH_EN = '1', 芯片选择增强型帧结构, 如图 7-1 所示。

字节数: 4~1023	2~6	1	1	1	1	0~252	2
前导码	帧分隔符	帧长	信道索引	标准识别号	帧头校验码	物理层载荷	帧校验序列
SHR		PHR		PSDU	FCS		

图 7-1 增强型帧结构示意图

对所有具有多个字节的域,如前导码、帧分隔符、帧校验序列,芯片最先发射或接收最低比特位的字节,对每个字节,芯片最先发射或接收最低的比特位。

◆ 前导码 (Preamble)

前导码长度可配置 PREAMBLE_LEN 寄存器(0x03),支持 4~1023 个字节长度。前导格式可通过寄存器 PREAMBLE_MODE 配置(0x03)。默认由 80 个字节组成,其顺序为"010101...01"。

◆ 帧分隔符(SFD)

帧分隔符 SFD 长度可配置 SYNCWORD_LEN 寄存器 (0x03), SFD 地址可配置 0x14~0x1A 寄存器。默认情况下,SFD 长度为 2bytes,SFD 地址指定为: 低字节 0x98,高字节 0xF3。

◆ 物理层头 (PHR)

物理层头 PHR 包括帧长、信道索引、标准识别号、帧头校验码 4 个部分,每部分长度为 1 字节。发送 PHR 可通过寄存器 0x07、0x08 与 0x09 配置,其中帧头校验码、帧长支持硬件自动生成与软件配置两种方式(详见 0x07、0x09 寄存器说明)。

▶ 帧长

帧长域占 1 字节长度,表示长度为 PSDU 中包含的字节数加上 3 (即加上信道索引、标准识别号、帧头校验码所占的 3 个字节)。

▶ 信道索引

信道索引为发送设备指定发送数据的无线信道号,信道索引表示公式为: 信道索引 = 信道组号×2+ 信道号

▶ 标准识别号

帧标准识别号为 1 字节长度,范围为 1~99 的 BCD 码。

标准识别号	描述
01	当前规范标准识别号
02~99	保留

表 7-1 标准识别号 (ACK 不使能)

当使能自动 ACK 功能时,发送帧标准识别号的 bit7~bit5 将自动插入 NOACK 与 PID 指示位,如表 7-2 所示。

PID

/1.5 256/352

PID 长度为 2bits, PTX 每成功接收一次 ACK 信号后将自动加'1', PRX 依据 PID 与 CRC 值确定当前包为新接收包或重传包(丢弃)。PTX 若重传超时,在下一次启动发送时 PID 不累加。

NOACK

此指示位用于当 ACK 功能使能时,PTX 告知 PRX 当前数据包无需回复 ACK 的特例情况,可以通过 PTX_FIFO0_NOACK 寄存器(0x0C)进行设置。

Bit string index	0~4	5	6~7
Bit name	标准识别号	NOACK	PID

表 7-2 标准识别号 (ACK 使能)

▶ 帧头校验码

帧头校验码占 1 字节长度,为物理层数据包 PHR 前面三个字节(帧长、信道索引、标准识别号)异或运算结果。

◆ 物理层载荷 (PSDU)

物理层载荷域具有可变的长度,负责传送物理层数据包里的数据。最大支持 PSDU 长度为 252 bytes,即 FIFO 最大可填写 252bytes。

◆ 帧校验序列(FCS)

FCS 域为 16bits 的 CRC 序列,校验范围为 PHR-PSDU。

生成多项式 $G(X) = 1+X^5+X^{12}+X^{16}$ 。

注: PTX 表示发送方, PRX 表示接收方, 以下相同。

7.2 直接FIFO帧结构

设置 PACK_LENGTH_EN = '0', 芯片选择直接 FIFO 帧结构。

字节数: 4~1023	2~6	1~65535
前导码	帧分隔符	物理层载荷(FIFO)
SHR		PSDU

图 7-2 直接 FIFO 帧结构示意图

前导码与帧分隔符的配置方式与增强型帧结构方式一致,发送除前导与 SFD 部分都需软件填写至 FIFO 内,填写内容与顺序可依据收发双方的约定灵活设置。

直接 FIFO 帧结构不支持 ACK、硬件 CRC 校验、FEC 功能。

直接 FIFO 下发送可依据 LEN0_TXMODE 控制位配置发送完成模式,接收可依据 LEN0_RXMODE 控制位配置接收完成模式,详见 0x02 寄存器相关说明。

第8章 RF收发器—多PIPE逻辑通道

在增强型帧结构控制方式下,芯片支持 4 个数据 PIPE,即 PIPE0~PIPE3。

每个 PIPE 具有独立的物理地址 (SFD),各 PIPE 地址配置详见寄存器 0x14~0x1A,各 PIPE 使能、各 PIPE 自动 ACK 功能使能详见寄存器 0x13。

各 PIPE 的 SFD 地址长度可通过 SYNCWORD_LEN 配置,默认 PIPE0 使能,长度为 2bytes,发送 SFD 为 0xF398。

PTX 在发送前使能需要的 PIPE,配置 PTX_FIFO0_PIPE 控制位(0x0C 寄存器),设置对应的 PIPE SFD 地址寄存器 Pn_ADDR 与 SFD 长度。

PRX 在接收到可同步的 PIPE SFD 之后(SFDDET_INT='1'),将数据包所属的 PIPE 信息存于寄存器 PRX_FIFO0_PIPE,若当前 PIPE 自动 ACK 功能使能,PRX 在接收完成后自动回复带有相同 PIPE 地址信息的 ACK 帧。

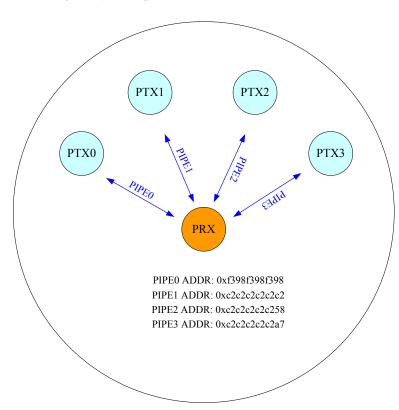


图 8-1 4 路 PIPE 通讯示意图

图 8-1 所示为 4 路 PIPE 通讯示意图, 4 路 PIPE 都具有独立 PIPE 地址, PRX 最大可支持与 4 个不同 PIPE 地址的 PTX 通讯。

PRX 可分时与不同 PIPE 相关通讯,但在一路 PIPE 完整收发流程完成之前,PRX 不可与另一路 PIPE 地址的 PTX 通讯。当多路 PTX 与一路 PRX 通讯时,设置各 PTX 寄存器的 AUTO_RXACK_TIME 值(0x45 寄存器)可以有效避免各个 PIPE 之间的干扰。

注: SFD 同步电路触发工作条件由寄存器 SFD_OPT (0x02) 控制,包括以下三种:检测到有效前导触发工作、检测到有效载波能量触发工作或无条件始终工作,默认设置为检测到有效前导后触发工作,具体可参考寄存器说明。

第9章 RF收发器—自动ACK与ART

在增强型帧结构模式下,芯片支持自动 ACK 及自动重传功能 (ART)。在自动 ACK 使能模式下,芯片将在增强型帧结构的基础上,在标准识别号字节中插入 PID 与 NOACK 指示位,详见表 7-2 说明。

发送 PID 由硬件自动生成,芯片在发送数据包完成后成功接收 ACK 信息则 PID 自动加'1'; NOACK 指示位由 PTX FIFO0 NOACK(0x0C) 寄存器设置。

- ◆ 当 PTX 与 PRX 同时使能当前通信 PIPE 的 ACK 功能后(Pn_EN = '1'并且 Pn_ACKEN = '1')。 PRX 在正确接收一帧数据后由 RX 模式自动切换为 TX 模式发送 ACK 帧,并在完成 ACK 帧发送后置起 FIFO0_INT(0x11)中断标志位(详见图 10-7)。 PTX 在一帧数据发 送完成后由 TX 模式自动切换为 RX 模式等待接收 ACK 帧,并在成功接收到 ACK 帧后置 起 FIFO0_INT 中断标志位(详见图 10-7)。
- ◆ PTX 如果在 AUTO_RXACK_TIME 寄存器设置时间内没有成功接收到 PRX 发送的 ACK 帧, PTX 将自动重传上一帧数据包。若重传次数超过 RE_TX_TIMES 寄存器(0x45 寄存器)设定次数,FIFO0_INT 中断标志位与重传超时指示位 FIFO0_MAX_RETX(0X0F 寄存器)将同时置'1'指示重传超时(详见图 10-8 至图 10-10)。
- ◆ PRX 在接收完成后若出现 PHR 或 CRC 错误将自动重收不回复 ACK 帧(详见图 10-11)。
 - ◆ 在 ACK 功能使能时,通过配置 PTX_FIFO0_NOACK 控制位可告知 PRX 当前发送帧 无需回复 ACK 帧(详见图 10-12)。

第 10 章 RF收发器—数据与控制接口

10.1 FIFO

HW3181 支持 1 级 256bytes 独立收发 FIFO,用于存放收发的数据,其访问地址为 0x70。

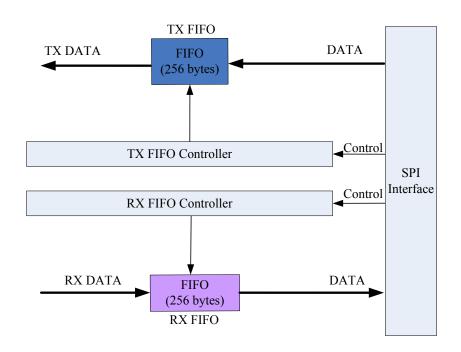


图 10-1 FIFO 控制示意图

10. 1. 1FIFO指针

对于 PTX,在开始发送之前可以通过 SPI 接口向 FIFO 内填写数据,芯片在发送过程中 FIFO 的读取权限交于内部状态机,在发送过程中禁止 SPI 接口读 FIFO 操作。

对于 PRX,在接收完成后可以通过 SPI 接口读取 FIFO 内的接收数据,芯片在接收过程中 FIFO 的写入权限交于内部状态机,在此过程中禁止通过 SPI 接口写 FIFO 操作。

FIFO 的读写指针可通过访问 0x4D 寄存器获取,通过操作 CLR_WR_PTR 或 CLR_RD_PTR 寄存器(0x0E)可对读写指针清'0'。

在收发过程中,硬件自带对读写指针的清'0'机制,在收发角色不切换的情况下无需软件参与读写指针的清'0'动作,在收发角色切换的情况下(接收切换为发送)需要软件在写 FIFO 之前将写指针清'0'。

- ◆ 写指针在以下情况将自动清'0'
 - ▶ PTX 关闭发送 (DBUS TXEN = '0')
 - ▶ PTX 清发送 FIFO0_INT 中断标志
 - ▶ PRX SFD 正确同步(SFDDET_INT = '1')
- ◆ 读指针在以下情况将自动清'0'

V1.5

- ▶ PTX 发送前导过程中
- ▶ PRX SFD 正确同步(SFDDET_INT = '1')

10. 1. 2FIFO操作说明

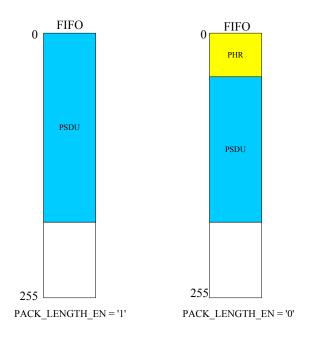


图 10-2 两种帧结构模式下 FIFO 结构

增强型帧结构模式下只需将 PSDU 填入 FIFO, 直接 FIFO 帧结构若需兼容增强型帧结构模式 需将 PHR 与 PSDU 依次填入 FIFO (如图 10-2 所示)。

增强型帧结构模式下芯片依据 PHR 设置的帧长信息自动完成 FIFO 内 PSDU 的发送与接收。

直接 FIFO 帧结构模式下芯片依据 LEN0_TXMODE 与 LEN0_RXMODE 的不同配置,完成 FIFO 内数据的发送与接收。

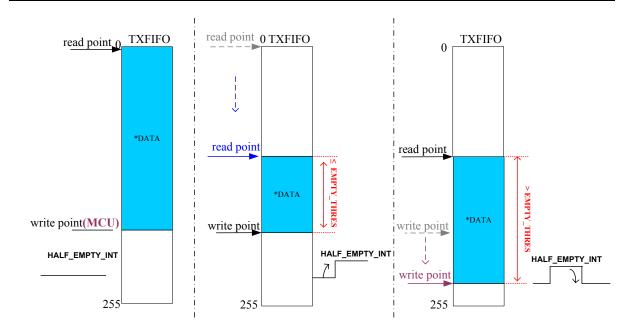


图 10-3 直接 FIFO 帧结构发送半空操作示意图

图 10-3 为直接 FIFO 帧结构模式下发送 FIFO 半空操作示意图。当写指针(MCU 通过 SPI 控制)与读指针(芯片状态机控制)之间的差值小于等于半空阈值 EMPTY_THRES(0x06)时,发送 FIFO 半空中断标志位 HALF_EMPTY_INT(0x0F)将会置'1'(软件可轮询中断标志位或通过 IRQ、GPIO 送出中断标志),主控 MCU 响应中断向 FIFO 中补充数据,当写指针与读指针之间的差值大于半空阈值 EMPTY_THRES 时,半空中断标志位 HALF_EMPTY_INT将会自动被清'0'。发送方主控 MCU 可依据半空标志完成发送数据长度大于 256bytes 情况的操作流程。

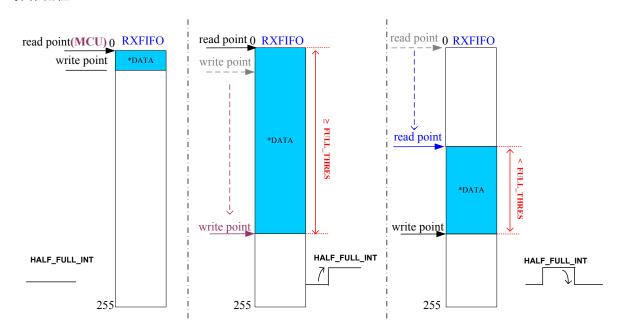


图 10-4 直接 FIFO 帧结构接收半满操作示意图

V1.5 262/352

图 10-4 为直接 FIFO 帧结构模式下接收 FIFO 半满操作示意图。当写指针(芯片状态机控制)与读指针(MCU 通过 SPI 控制)之间的差值大于等于半满阈值 FULL_THRES(0x06)时,接收 FIFO 半满中断标志位 HALF_FULL_INT(0x0F)将会置'1'(软件可轮询中断标志位或通过 IRQ、GPIO 送出中断标志),主控 MCU 响应中断读取 FIFO 中数据,当写指针与读指针之间的差值小于半满阈值 FULL_THRES 时,半满中断标志位 HALF_FULL_INT 将会自动被清'0'。接收方主控 MCU 可依据半满标志完成接收数据长度大于 256bytes 情况的操作流程。

- 注 1: 硬件对读写指针有溢出保护处理,读写指针大于 255 时返回地址 0。
- 注 2: 半空半满阈值可通过寄存器 0x06 配置,阈值设置的大小需结合当前数据速率与 SPI 的通讯速率。

10.2 中断

通过配置中断使能 INTIE(0x10)寄存器,可将芯片内部各中断标志通过 IRQ 引脚输出,方便外部 MCU 获知芯片的状态进行相应的中断处理。GPIO 也可输出中断标志,具体见 0x1D 及 0x1E 中 GPIO 功能选择位的描述。

中断源包括:

- ◆ POR 中断
- ◆ chip ready 中断
- ◆ 有效 SFD 中断
- ◆ 无效 SFD 中断
- ◆ 有效前导中断
- ◆ 无效前导中断
- ◆ GPIO 外部中断
- ◆ WDT 中断
- ◆ 发送 FIFO 半空、接收 FIFO 半满中断(只在直接 FIFO 帧结构下有效,详见 10.1.2 章节 说明)
- ◆ RSSI 中断
- ◆ 数据同步时钟中断(直接收发模式时有效)
- ◆ FIFO 中断

每个中断源都有相应的中断使能位,若中断不使能,中断源只作为内部标志位使用。各中断源详见 **0x0F** 寄存器说明。

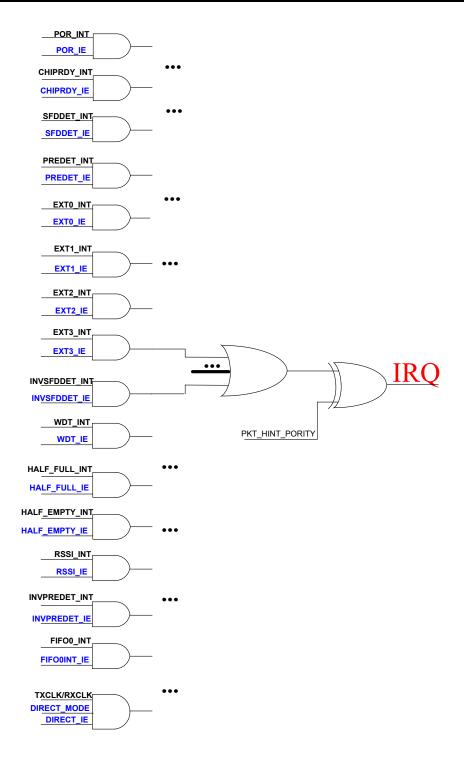


图 10-5 IRQ 中断输出示意图

其中,发送方 FIFO 中断 FIFO0_INT 指示 FIFO 发送完成、ACK 接收成功、或重传超时 (FIFO0_MAX_RETX 为'1');接收方指示接收完成、ACK 发送完成,各情况具体可参考图 10-6 至图 10-13。

中断输出的有效电平可以由中断极性控制位(PKT_HINT_PORITY)配置,默认为低电平中断有效。

中断及其标志位可以通过寄存器 INTIC(0x11)清'0'或特定条件清'0',详见 INT 寄存器(0x0F)

说明。

10.2.1增强型帧结构中断

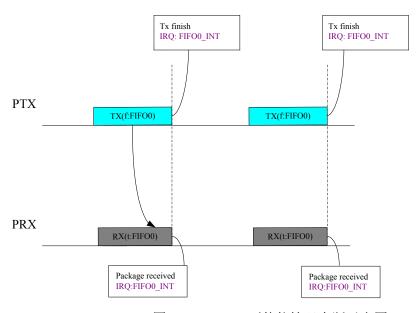


图 10-6 ACK 不使能情况中断示意图

ACK 不使能情况下(Pn_ACKEN=0), PTX 在发送完成后中断标志位 FIFO0_INT 将置'1', PRX 在接收数据包完成后中断标志位 FIFO0_INT 将置'1'(如图 10-6 所示)。接收端在响应中断时 需检查 PRX_PHR_ERR 与 PRX_CRC_ERR 指示位(0x0C 寄存器)判断所收取包 PHR 与 PSDU 是否正确。

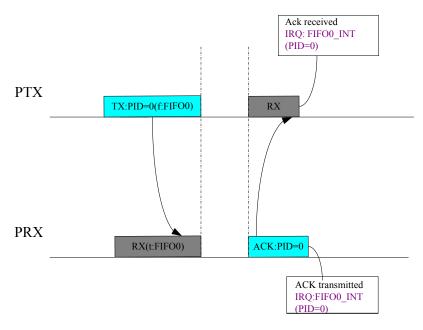


图 10-7 ACK 使能正常通讯中断示意图

ACK 使能情况下(Pn_ACKEN=1), PTX 在成功接收 ACK 后,中断标志位 FIFO0_INT 将置'1'。若 PRX 成功接收数据包(PHR与 PSDU 正确),在回复 ACK 后中断标志位 FIFO0_INT 将置'1',如图 10-7 所示。

V1.5

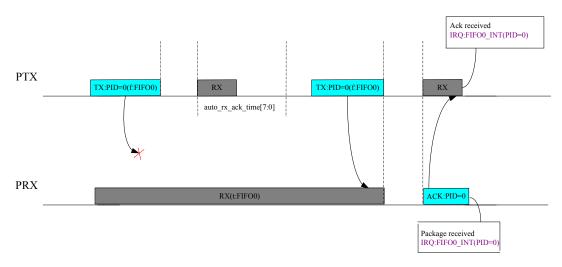


图 10-8 PTX 自动重传情况 1 中断示意图

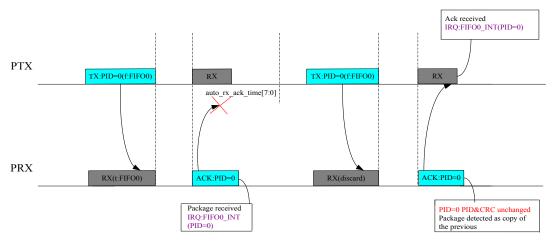


图 10-9 PTX 自动重传情况 2 中断示意图

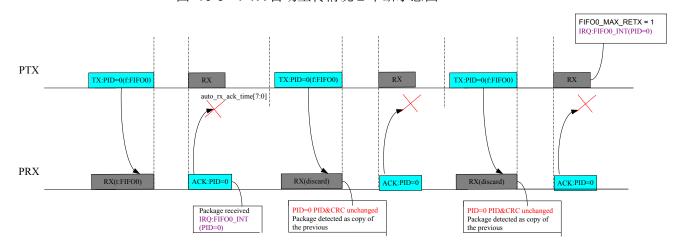


图 10-10 PTX 自动重传情况 3 中断示意图(重传超时,重传次数为 2)

图 10-8 至图 10-10 所示为可能出现的收发不成功情况, PTX 在发送数据包完成后切换为接收 ACK 状态, 若在等待 ACK 时间内(AUTO_RXACK_TIME 寄存器设置)没有收到有效 ACK 帧,将自动切换为自动重传,重传过程中发送帧 PID 保持不变。

PRX 在成功接收数据包后自动判断收取的数据帧 PID, 若当前收取的 PID 与 CRC 信息与前

- 一次相同,将视为重收包,不再出中断(只返回 ACK)。
- 注 1: PTX 自动重传功能只在 ACK 使能的情况下有效。
- 注 2: 如果 PTX 在重传 RE_TX_TIMES 次数内没有正常接收到 ACK, PTX 在置起中断 FIFO0_INT 的同时, FIFO0_MAX_RETX 将置'1'。
- 注 3: 重收弃包功能只在 ACK 使能的情况下有效。

图 10-11 PRX 自动重收中断示意图

图 10-11 所示为 PRX 自动重收的情况,PRX 在接收到数据包之后若检测 CRC 或 PHR 有误将不返回 ACK 而切换至自动重收,直至收到正确的数据包返回 ACK 之后中断标志位 FIFO0_INT 将置'1'。

注 1: PRX 自动重收功能只在 ACK 使能的情况下有效。

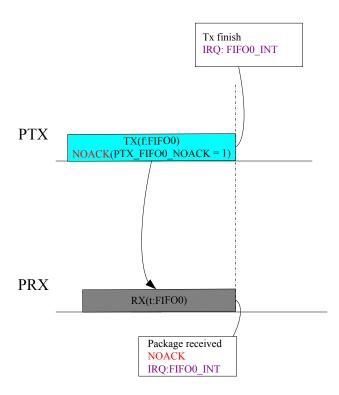


图 10-12 ACK 使能情况下 NOACK 功能中断示意图

图 10-12 所示为收发 ACK 使能时,若设置 PTX_FIFO0_NOACK 为'1', PTX 在发送数据包完成后中断标志位 FIFO0_INT 将置'1', PRX 在接收数据包完成后中断标志位 FIFO0_INT 将置'1'。与 ACK 不使能情况类似,接收端在响应中断时需检查 PRX_PHR_ERR 与PRX_CRC_ERR 指示位判断所收取包 PHR 与 PSDU 是否正确。

10. 2. 2直接FIFO帧结构中断

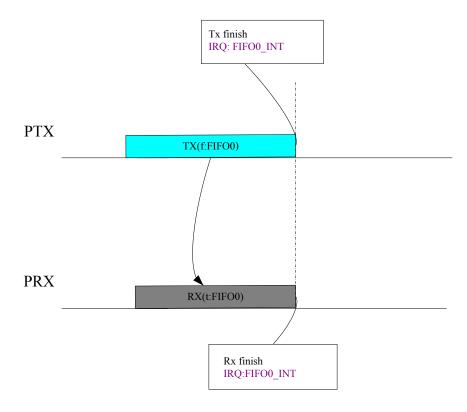


图 10-13 直接 FIFO 帧结构中断示意图

直接 FIFO 帧结构情况下 PTX 发送数据包完成后中断标志位 FIFO0_INT 将置'1', PRX 在接收数据包完成后中断标志位 FIFO0_INT 将置'1', 收发完成条件配置详见 12.2 章节说明。

10.3 SPI通信接口

HW3181 支持 4 线 SPI 通信接口,可访问芯片内部寄存器与收发 FIFO,支持对 FIFO 连读连写操作。

10. 3. 1SPI帧格式

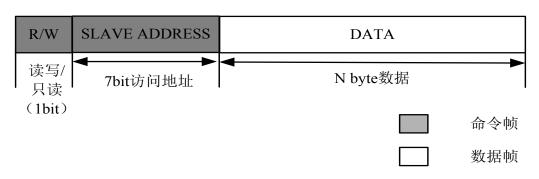


图 10-14 SPI 帧格式

SPI帧格式由命令帧与数据帧两部分构成。

其中 8bits 命令帧首位为读写控制位,'0'为只读操作,'1'为读写操作(读取某寄存器值的同时可以写入值,对 FIFO 为只写操作),后 7 位为读写地址位。

V1.5

数据帧按 SPI 接口访问对象不同有所区别,若 SPI 访问内部寄存器则数据帧固定为 2bytes,若 SPI 访问 FIFO,在非连读连写情况下为 1byte (内部 FIFO 数据宽度),在连读连写情况下数据帧长度由主设备访问长度决定。

数据格式为高位 (MSB) 在前低位 (LSB) 在后。

10.3.2寄存器访问时序

SPI 接口读写寄存器操作时序如图 10-15 与图 10-16 所示。

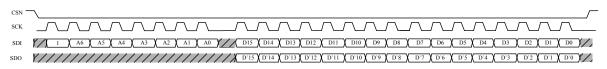


图 10-15 SPI 写寄存器时序

注: 写寄存器时 SDO 送出的 D'x 为所访问寄存器的原值。

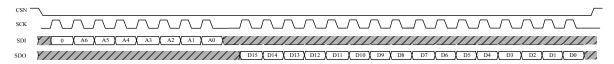


图 10-16 SPI 读寄存器时序

10. 3. 3FIFO访问时序

FIFO 支持连续读写操作,最小单位为 1byte, FIFO 访问地址为 0x70。SPI 接口读写 FIFO 操作时序如图 10-17 与图 10-18 所示。

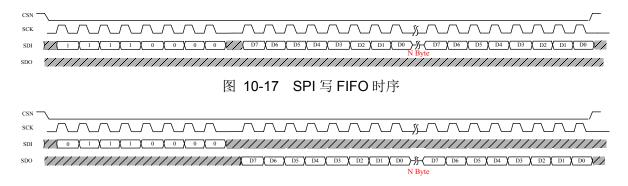


图 10-18 SPI 读 FIFO 时序

10. 3. 4SPI时序参数

V1.5 270/352

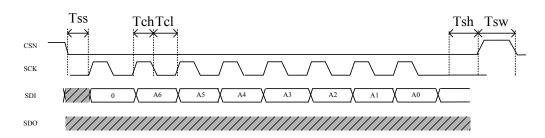


图 10-19 SPI 时序参数示意图

Symbol	Parameter	T(ns)
Tss	Select setup time	20
Tcl	Clock low time	62.5
Tch	Clock high time	62.5
Tsh	Select hold time	40
Tsw	Select high period	200

表 10-1 推荐 SPI 时序 (8MHz) 参数

10.4 GPIO配置

HW3181 支持四组 GPIO, 分别为 GPIO0、GPIO1、GPIO2、GPIO3, 可通过寄存器 IO_CFG0 (0x1D) 及 IO CFG1 (0x1E) 对 GPIO 进行配置。

GPIO 默认状态如表 10-2 所示:

GPIO	默认状态
GPIO0	POR 输出
GPIO1	POR 反向输出
GPIO2	芯片时钟输出(晶振频率/64)
GPIO3	保留状态 (输入)

表 10-2 GPIO 默认状态

当 GPIO 设置为输入功能时(GPIOn_IE = '1'),通过寄存器 GPIOn_PE 可以配置 GPIO 管脚的上拉功能,在默认状态下,GPIO 管脚无上拉电阻。当设置 GPIOn_IE 为'0'时,屏蔽 GPIO的外部输入,芯片内部接收为低电平,默认状态下,GPIO 不屏蔽外部输入。

当 GPIOn_FUN 配置为输出功能时,GPIO 的输出使能自动打开,GPIOn 的输出有效电平可以通过 GPIOn_PORITY (0x1C) 进行配置;通过寄存器 GPIOn_DS 可以配置 GPIO 的输出驱动电流,芯片的默认状态为大电流模式。

GPIO 支持内部 clock 输出功能(设置 GPIOn_FUN=5'b01111),以方便某些低 BOM 应用场合,向主控 MCU 提供时钟。

芯片上电默认从 GPIO2 输出主晶振 64 分频时钟,用户可配置 GPIOn_FUN 选择其它 GPIO,输出时钟频率可通过寄存器 CLKCFG (0x1C) 配置。

当设置 LPFEN(0x1C)为'1'且 WDT_EN 为'1'时,当芯片进入 SLEEP(RC)模式后将自动切换为 RC 时钟输出。

第 11 章 RF收发器—频点与数据传输参数设置

11.1 频点设置

HW3181 共支持 315/433/779/868/915MHz 5 个典型频段, 其中 433MHz 频段频点支持默认设置与直接设置两种模式, 其余频段只支持直接设置模式。HW3181 支持 20/26MHz 晶振, 对于不同的晶振, 支持的频点范围为:

- 270-348MHz/403-522MHz/806-1045MHz (26MHz 晶振)
- 235-522MHz/700-1045MHz (20MHz 晶振)

芯片默认配置下支持 433 频段,779 频段仅在 20MHz 晶振模式下支持。详细频段设置参考表 11-1 和表 11-2。

20M 晶振模式					
VCO HP SEL	PLL_TRXLB_SEL				
VCO_HB_SEL	2'b00	2'b01	2'b10	2'b11	
1'b0	700-874MHz	350-437MHz	235-291MHz	-	
1'b1	856-1045MHz	428-522MHz	285-350MHz	-	

表 11-1 20MHz 晶振下各频段范围与配置

26M 晶振模式					
VCO UR SEL	PLL_TRXLB_SEL				
VCO_HB_SEL	2'b00	2'b01	2'b10	2'b11	
1'b0	806-874MHz	403-437MHz	270-291MHz	-	
1'b1	856-1045MHz	428-522MHz	285-348MHz	-	

表 11-2 26MHz 晶振下各频段范围与配置

11.1.1频点默认设置模式

在数据收发时,收发两端的频点设置值必须一致。

频点起始值可以通过寄存器 RF_FREQ_BASE(0x2F)配置,信道间隔由寄存器 CH_SPACE(0x2F)配置,信道号可通过寄存器 CHANNEL1~CHANNEL8(0x28~0x2B)配置。

其中 CHANNEL1 为主信道号,CHANNEL2~CHANNEL8 为从信道号,从信道号只在信道跳频模式开启后有效。信道号的取值可以从 0 到 255,也就是在单个应用中最多支持 256 个信道。

RF FREQ BASE 寄存器设置值以 100kHz 为单位,即起始频点为:

RF_FREQ_BASE*100(kHz)。

CH_SPACE 确定频点间隔:

(例: 需要的起始频点为 433MHz, RF_FREQ_BASE 设置值为 0x10EA, 即十进制数 4330)

00: 间隔为 100kHz

01: 间隔为 200kHz

10: 间隔为 400kHz

V1.5 272/352

11: 间隔为 800kHz

最终发送或接收的主信道频点值为:

(RF FREQ BASE + CHANNEL1*2^{CH_SPACE})*100(kHz).

11.1.2频点直接设置模式

在直接频点设置模式下(RF_PLL_DIRECT = '1', 0x30 寄存器),可通过软件直接设置 Sigma-Delta 调制器的整数部分(Integer)和小数部分(Fraction)分频比。

整数部分可通过 RF_FREQ_BASE 寄存器设置,小数部分可通过 RF_FREQ_FRACTION 寄存器(0x30、0x31)设置,具体的计算公式如下:

 $RF_FREQ_BASE = floor(f_c*k_{freq}/f_{xtal})$

RF_FREQ_FRACTION = round($(f_c * k_{freq} / f_{xtal} - Integer)*2^{21})$

其中,f_c为需要设置的信号载波频率,f_{xtal}为使用晶振的频率,系数 k_{freq}配置详见表 11-3。

k _{freq} 值配置				
PLLTRXLB_SEL	k _{freq}			
2'b00	2			
2'b01	4			
2'b10	6			

表 11-3 系数 k_{freq} 配置表

直接频点设置顺序:

- 1.使能 RF_PLL_DIRECT 并设置 RF_FREQ_FRACTION 寄存器
- 2.设置 RF_FREQ_BASE 寄存器

注:直接设频点模式下,芯片从 DEEP SLEEP/SLEEP 唤醒后需重新配置频点。

11. 1. 3跳频接收模式

HW3181 支持硬件跳频接收功能(HOP_ENABLE = '1', 0x2D 寄存器)。在硬件跳频接收模式下,接收端将以设定的时间间隔扫描需要的各个频点,当发现某一频点接收到有效信号后,接收会停留在该频点完成数据包的接收。

系统最大可以扫描 8 个频点,具体需要扫描的频点数可以通过寄存器 HOP_NUM (0x2D) 设置,各扫描频点可以通过寄存器 CHANNEL1~CHANNEL8 设置。

在 频 点 默 认 设 置 模 式 下 各 信 道 频 点 : 主 信 道 频 点 + Δ f1(CH_SPACE 设 置 的 频 点 间 隔)*CHANNELN

在频点直接设置模式下各信道频点:主信道频点+ Δ f2(HOP_SPACE(0x3C、0x3D)设置的频点间隔)*CHANNELN,HOP_SPACE 具体的计算公式如下:

 $HOP_SPACE = round((fh* k_{freq}/fosc)*2^20)$

其中 fh 为需要的扫描频率间隔,k_{freq} 取值详见表 11-3,fosc 为晶振频率。

每个频点的扫描时间间隔可以通过寄存器 HOP_TIMER(0x2D)设置,实际的扫描时间间隔为:

Ts = $(HOP_TIMER+LP_TIMER) *1/(10^3*DR_GFSK)$

其中 DR_GFSK 为数据速率(kbps), LP_TIMER(0x25)为低功耗接收模式时间配置。

跳频锁定的频点与当前跳频所在频点可通过寄存器 HOPCH(0x3F)读取。

注:跳频中的有效信号可选择接收信号能量满足条件或接收到有效前导,可通过 HOP_SEL 寄存器(0x25)配置。

11.2 数据传输参数设置

11. 2. 1数据速率设置

HW3181 支持数据速率为 1.2~100kbps,可通过寄存器 SYMBOL_RATE(0x32、0x33)设置,具体设置方法如下:

SYMBOL_RATE= round((DR_GFSK*2²²) /(2*10⁶))

其中 DR GFSK 为数据速率 (kbps)。

例如:选择速率速率为 10kbps,SYMBOL_RATE = round(($10*10^3*2^{22}$)/ ($2*10^6$)) = 20972,转换为 16 进制为 18'h051EC。

11. 2. 2发送调制特性设置

♦ GFSK BT

通过寄存器 BT MODE (0x25) 将 BT 设置为 0.5 或者 1, 默认为 0.5。

◆ 调制频偏

 $DEVIATION = round(f_{dev}*k_{dev}/f_{xtal})$

其中 f_{dev} 为期望调制频偏,支持范围为 $0\sim50kHz$, f_{xtal} 为芯片使用的晶振频率, 系数 k_{dev} 配置 详见表 11-4。

k _{dev} 值配置			
PLLTRXLB_SEL	k _{dev}		
2'b00	2 ¹⁵		
2'b01	2 ¹⁶		
2'b10	3*2 ¹⁵		

表 11-4 系数 k_{dev} 配置表

例如: 期望调制频偏: 25kHz, 使用晶振频率 26MHz。

DEVIATION = ROUND((25*10³*2¹⁶)/(26*10⁶)) = 63,转换为 16 进制为 10'h03F。

11. 2. 3发送功率设置

发送功率由 PA VB1 和 PA VB2 (0x40) 设置,设置值与输出功率的对应关系详见

《AN1045_应用笔记_HW3000 应用注意事项》3.5 章节相关说明。

11. 2. 4接收滤波器带宽设置

通过设置寄存器 FILTER2_BAND (0x2E) 可以改变接收端的滤波器带宽,使用的滤波器带宽值为

 $BW = (FILTER2_BAND+1)*1kHz$

可配置的范围 1kHz ~ 128kHz。

第 12 章 RF收发器一收发操作流程

12.1 增强型帧结构收发流程

对于 PTX, 通过 SPI 接口设置 PHR (TXPHR 和 PSDULEN) 并向 FIFO 内填写发送的 PSDU 数据。填写 PSDU 完成之后需设置 PTX_FIFO0_PIPE 并将 PTX_FIFO0_OCPY(0x0C)置'1',以指示 FIFO 被占用并等待发送。

待 PTX 发送完成中断置起后,需软件清中断标志位 FIFO0_INT,关闭 DBUS_TXEN 完成一次发送流程。

增强型帧结构收发流程详细参考《AN1045_应用笔记_HW3000 应用注意事项》2.2.1 章节。 图 12-1 为简单的 PTX 发送流程图。

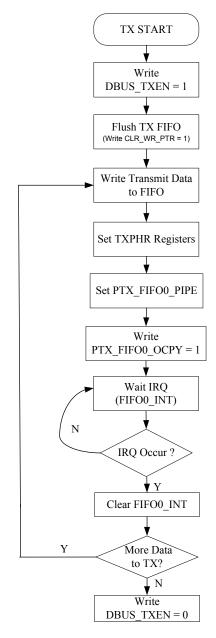


图 12-1 PTX 发送流程图

V1.5 276/352

在发送过程中,芯片根据发送的 PHR 以及 PSDU 自动计算 CRC,并将计算出的 CRC 跟随在 PSDU 之后进行发送。可以设置 LEN1_CRCSEL(0x02)为'1'屏蔽硬件 CRC 的功能,将寄存器 CRCVAL(0x12)中的数值作为数据包的 CRC,跟随 PSDU 进行发送。

对于 PRX,硬件在正确同步 SFD 之后解析 PHR,得到包括数据长度在内的相关信息,然后向 FIFO 内填写接收的 PSDU 数据,接收完成后中断标志位 FIFO0_INT 将置'1'。

软件可读取 PHR 数据(RX_PHR0 和 RX_PHR1)、FIFO 的数据以及 CRC 的校验值 (CRCVAL),之后需软件清中断标志位 FIFO0_INT。图 12-2 为简单的 PRX 接收流程图。

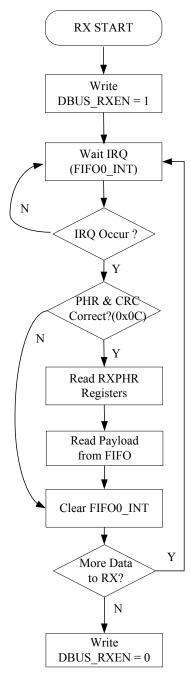


图 12-2 PRX 接收流程图

注 1: 关闭发送或接收使能后需等待 3*Tsymb 以上的时间间隔后才能再次使能发送或接收。

注 2: 在自动 ACK 使能的情况下(Pn_ACKEN='1'),必须使用硬件进行 CRC 校验,即 LEN1_CRCSEL 设为'0'。

12.2 直接FIFO帧结构收发流程

与增强型帧结构类似,PTX 在发送前需将 PTX_FIFO0_OCPY 位置'1',以指示所填的 FIFO 被占用。

直接 FIFO 帧详细收发流程参考《AN1045_应用笔记_HW3000 应用注意事项》2.2.2 章节。

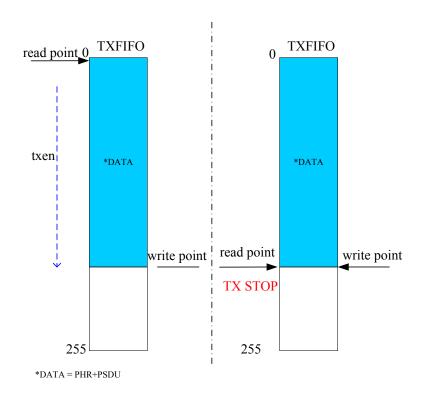


图 12-3 直接 FIFO 帧结构 LEN0_TXMODE='1'发送停止示意图

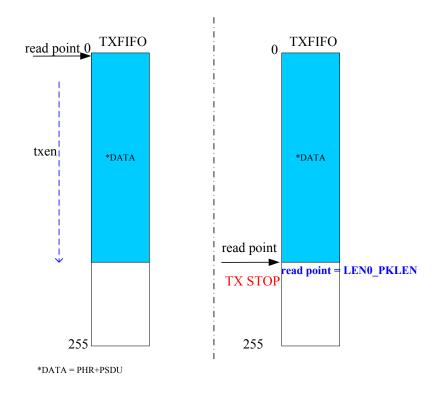


图 12-4 直接 FIFO 帧结构 LENO_TXMODE='0'发送停止示意图

若配置 LEN0_TXMODE 为'1', PTX 在读写指针相等时自动停止发送(如图 8-3 所示),发送完成后将中断标志 FIFO0_INT 置'1';

若配置 LEN0_TXMODE 为'0', PTX 按照 LEN0_PKLEN 寄存器(0x0D) 设置值发送(如图 12-4 所示),发送完成后将中断标志 FIFO0_INT 置'1'。

若配置 LEN0_RXMODE 为'1', PRX 按照 LEN0_PKLEN 设置值进行接收。PRX 可通过响应半满中断标志 HALF_FULL_INT 获取 FIFO 内收取数据包携带的长度信息,并根据该长度信息设置接收数据长度寄存器 LEN0_PKLEN, PRX 接收完成后将中断标志 FIFO0_INT 置'1';

若配置 LEN0_RXMODE 为'0', PRX 按照用户设定的帧长信息配置(如图 12-5)自动完成接收。帧长信息配置详见寄存器 0x0E, PTX 需按照规定的帧长信息位置、长度等配置信息填充发送 FIFO, PRX 自动识别帧长信息接收完成后将中断标志 FIFO0_INT 置'1'。

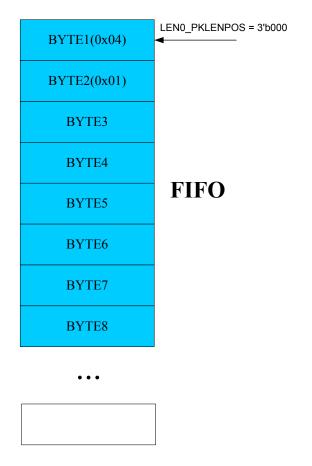


图 12-5 帧长信息配置示意图

以图 **12-5** 为例,若设定 LENO_PKLENPOS = 3'b000,则 FIFO 内以第一个 byte 作为自动接收帧长信息起始 byte。

- ◆ 若 LEN0_PKLENBYTS = '0',则以 0x04 作为自动接收帧长度信息,PRX 将共接收 4 +LEN0_PKLENADD bytes 数据后停止接收,其中 LEN0_PKLENADD (0x4E)为额外接收 byte 数寄存器,由软件根据需要调整。
- ◆ 若 LEN0_PKLENBYTS = '1', LEN0_PKLENPOLAR = '0', 则以 0x0401 作为自动接收 帧长度信息, PRX 将共接收 1025 (0x0401) + LEN0_PKLENADD bytes 数据后停止接收。
- ◆ 若 LEN0_PKLENBYTS = '1', LEN0_PKLENPOLAR = '1', 则以 0x0104 作为自动接收 帧长度信息, PRX 将共接收 260 (0x0104) +LEN0_PKLENADD bytes 数据后停止接收。

在直接 FIFO 帧结构下,若发送或接收长度大于 256bytes,需要借助发送半空与接收半满中断配合完成收发流程。

注:在使能接收前,建议软件可以先将 LEN0_PKLEN 设置为较大的初始值,以便留出足够的时间给软件获取 FIFO 内收取数据包携带的长度信息并填入 LEN0_PKLEN 寄存器,防止 FIFO0_INT 的误触发。

12.3 直接收发DIRECT模式

设置 DIRECT_MODE 寄存器,芯片进入直接收发模式。

发送端可通过 IRQ(DIRECT_IE = '1')或 GPIO(GPIOn_FUN = 5'b00010)输出发送同步时钟,

通过 GPIO(GPIOn_FUN = 5'b00011)直接灌入发送数据;

接收端可以通过 IRQ (DIRECT_IE = '1') 或 GPIO(GPIOn_FUN = 5'b00100)端口输出接收同步时钟,通过 GPIO(GPIOn FUN = 5'b00101)端口输出接收数据。

具体 GPIO 的设置可参考第 13 章寄存器设置。

直接发送数据的时序如图 12-6 所示:

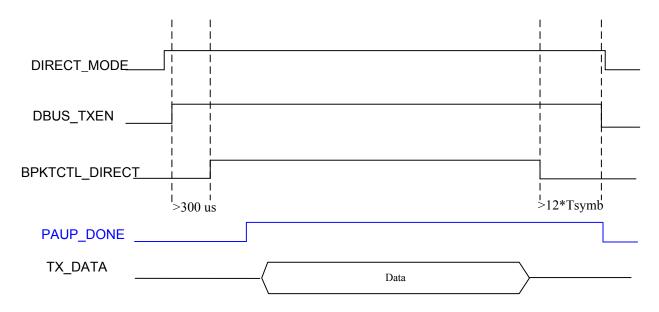


图 12-6 直接发送模式时序图

直接接收数据的时序如图 8-7 所示:

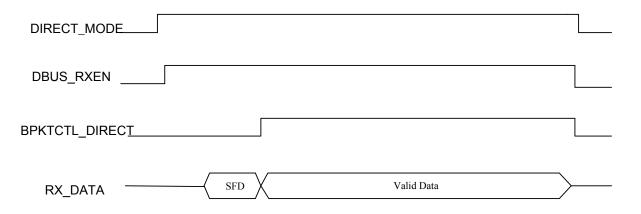


图 12-7 直接接收模式时序图

在直接发送模式下,需要在 DBUS_TXEN 置高 300 μ s 后置高寄存器 BPKTCTL_DIRECT (0x1C),以保证前端 PLL 的稳定,等待 PA Ramp 完成后,PAUP_DONE(0x1B)指示位将置为'1',之后才能发送有效数据。

当 DBUS_RXEN 置高 300 µs 左右后,接收机能够正常的接收数据,当发现有效的 SFD 以后,需将 BPKTCTL_DIRECT 置高,调整接收机的环路带宽,提高接收机性能。

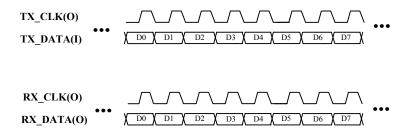


图 12-8 直接收发模式数据时序示意图

直接收发模式下数据与时钟的时序如图 12-8 所示。发送端 MCU 依据芯片输出的 TX_CLK 向芯片灌入需要发送的数据,芯片内部以 TX_CLK 上升沿采样数据;接收端 MCU 可依据芯片输出的 RX_CLK,上升沿采样输出的接收数据 RX_DATA。

12.4 连续发送模式

在直接收发模式的情况下,芯片支持内部数据的连续发送的方式,以方便芯片的测试。

使能 REP_MODE (0x1C), 依据 12.3 节使能直接发送模式,芯片将连续发送"0101"的数据序列。

使能 PN9_MODE (0x1C),依据 12.3 使能直接发送模式,芯片将连续发送 PN9 数据序列。

第13章 RF收发器—唤醒

13.1 Wake-up Timer唤醒

HW3181 支持 32.768kHz 的内部 RC 时钟,用于芯片在 SLEEP(RC)模式下的自动唤醒。

Wake-up Timer 唤醒功能需设置 WDT_EN = '1', WDT_IE = '1', 自动唤醒间隔可通过寄存器 WDT_WTM (0x1F) 与 WDT_WTR (0x20) 配置。唤醒间隔 (s):

$$T_{WUT} = \frac{32 \times (WDT _WTR + 1) \times (WDT _WTM + 1)}{32768}$$

Wake-up Timer 计数器溢出时,芯片将中断标志 WDT_INT 置'1',并从 SLEEP(RC)状态唤醒,可进行正常收发操作,软件清中断标志位 WDT_INT 后芯片再次进入 SLEEP(RC)状态。

若 WDT_IE = '0', Wake-up Timer 计数器溢出时将不会唤醒芯片,可通过配置 GPIOn_FUN,将 Wake-up Timer 的计时器溢出标志脉冲通过 GPIO 送出。

13.2 GPIO外部中断唤醒

GPIO 外部中断唤醒功能需设置 EXTn_IE = '1', 支持上升沿、下降沿、双边沿电平唤醒,详细见 GPIOn_FUN 寄存器配置。

芯片响应外部中断后标志位 EXTn_INT 将置'1',芯片从 SLEEP(RC)状态被唤醒后可进行正常 收发操作,软件清中断标志位 EXTn_INT 后芯片再次进入 SLEEP(RC)状态。

若使能 EXTn_IE,外部中断标志位 EXTn_INT 通过 IRQ 引脚输出。

第 14 章 RF收发器—RC校准

芯片内部 RC 支持软件校准与硬件自动校准两种模式,可由 RCCODE_SEL 寄存器 (0x38) 配置。

14.1 软件校准

软件校准模式下,调整 WDT_CAL 寄存器 (0x38) 值可调整内部 RC 时钟频率,具体可参考 WDT_CAL 寄存器说明。

14.2 硬件自动校准

硬件自动校准需在芯片处于 IDLE 模式下完成,配置 RCCAL_STEN 寄存器(0x3A)可支持单次校准与连续校准两种模式。校准完成后 CAL_DONE 标志位(0x39)将置'1',并可通过 RCCODE 寄存器(0x39)获取 RC 校准配置字。

第 15 章 RF收发器—异常状态的检测及复位

15.1 芯片异常状态检测

寄存器 CHIPSTA1(0x36)提供芯片内部电路的工作状态,如表 15-1 所示:

芯片状态	CHIPSTA1(HEX)
SLEEP/DEEP SLEEP	0x0777
IDLE	0x0077
TX(进入发送状态 100µs 之后)	0x008A
RX(进入接收状态 100µs 之后)	0x000D

表 15-1 CHIPSTA1 各状态说明

如果在相关状态下,0x36 寄存器的读取值与参考值不符,则说明芯片工作进入异常状态,可根据需要通过 PDN 端口或软件复位对芯片进行复位操作。

15.2 寄存器与FIFO校验功能

芯片提供寄存器与 FIFO 写入数据的校验功能,以防止 SPI 通信过程中受到外界干扰可能造成的误写,校验寄存器为 REGCHECK(0x6F)。

若需要对 SPI 写入值进行校验,软件在进行寄存器写入或 FIFO 写入之前,读取 REGCHECK 寄存器初始值,将之后的写入数据以 byte 为单位(寄存器写入先校验高 byte,再校验低 byte)与 REGCHECK 初始读取值进行异或计算。在数据写入完成之后,通过比较软件计算的校验值与 REGCHECK 当前读取值是否一致,判断 SPI 写入数据是否有误。

15.3 芯片复位

芯片从 POWER DOWN 状态恢复至 IDLE 状态过程中内部 POR 将复位全芯片。

芯片从 DEEP SLEEP/SLEEP 恢复至 IDLE 状态,芯片除寄存器将全部被复位。

芯片共提供两种软复位方式,分别为 SFT_RST0(0x60)和 SFT_RST1(0x61),其中:

SFT_RST0 复位硬件电路与 FIFO 而保留原有的寄存器设置值;

SFT RST1 进行全芯片复位,寄存器同时也会被复位成默认值。

第 16 章 RF收发器—其它功能与设置

16.1 白化与CRC

芯片支持数据的白化功能,以增强长'0'或长'1'类型数据的传输能力。可以通过寄存器 SCRAMBLE_ON(0x02)开启白化功能,白化种子可通过寄存器 SCRAMBLE_DATA(0x05)设置,若 SCRAMBLE_DATA 设置为全 0 则不具备白化功能。

增强型帧结构白化区域为 PHR-PSDU-FCS; 直接 FIFO 帧结构白化区域为 FIFO 内的填充数据。

其基本数据流为:

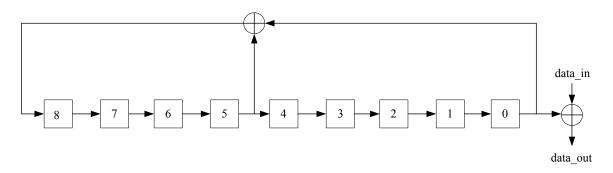


图 16-1 PN9 数据白化生成器

增强型帧结构 CRC 校验范围为 PHR-PSDU。

增强型帧结构支持 CRC 硬件实现与软件实现两种模式,可通过 LEN1_CRCSEL 寄存器配置。 若选用软件实现 CRC 功能,发送端需在发送 CRC 之前将 CRC 值填入 CRCVAL 寄存器。

接收端可通过 PRX_CRC_ERR 标志位判断接收数据包 CRC 校验是否正确,也可通过 CRCVAL 寄存器读取接收到的 CRC 由软件自行校验。

硬件 CRC 选用的生成多项式为 $G(X) = 1 + X^5 + X^{12} + X^{16}$,其实现的移位反馈寄存器的逻辑如图 16-2 所示,生成后的 CRC 会进行取反操作,然后跟随在数据之后进行发送。移位反馈寄存器初始值可通过寄存器 CRC_INIT_DATA(0X04)设置。

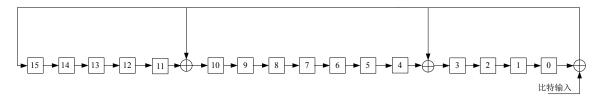


图 16-2 CRC 硬件实现示意图

直接 FIFO 帧结构不支持硬件 CRC 功能。

16.2 FEC

增强型帧结构模式下支持数据自动的 FEC 纠错码功能,码率 R 为 2/3。使用 FEC 可以在一定程度上纠正传输中的传输错误,可以提高系统在低信噪比环境下传输成功率,但 FEC 会增

加冗余数据,增加数据包的传送时间。可以通过配置寄存器 FEC_ON(0x02) 使能 FEC 功能。

注: 白化或 FEC 功能需在 PTX 和 PRX 两方同时开启或关闭。

16.3 数据编码

芯片支持 Manchester 与 8bit/10bit line code 两种编码方式,可通过 PACK_TYPE (0x02) 寄存器配置,默认不对数据进行编码。

增强型帧结构编码区域为 PHR-PSDU-FCS; 直接 FIFO 帧结构编码区域为 FIFO 内的填充数据。

16.4 RSSI

在接收模式时,芯片会评估天线端接收信号能量的大小,该数值会保存在寄存器 RSSI(0x23)中。RSSI的读数单位为 dBm,数据的格式为二进制补码形式的符号数。在 RSSI 寄存器里提供两个 RSSI 读数值,其中 RSSI1 保存的是上一个有效数据包(SFD 正确同步)的 RSSI 计算值,而 RSSI2 中保存的是实时的 RSSI 计算值,可用于 CSMA/CA 工作。

16.5 载波检测(Carrier Detect)

芯片支持载波检测功能,即在接收模式时,芯片会监控带内的接收信号能量,当接收信号能量大于设置的域值后,芯片将给出载波检测指示信号。

载波指示的能量域值可通过寄存器 CDTH (0x27) 设定,当输入信号能量大于 CD_TH1 设置值后,载波检测指示位 CD 会置高,当信号能量降低并小于 CD_TH2 的设置,载波检测指示位 CD 将立刻复位。

CD TH1 和 CD TH2 设置值单位为 dBm,数据格式为二进制补码形式的符号数。

建议的 CD_TH1 与 CD_TH2 的设置方法:

- 1. 在接收灵敏度点读取 RSSI 寄存器值;
- 2. CD_TH1 的设置值为 RSSI 2dBm;
- 3. CD_TH2 的设置值为 RSSI 5dBm。
- CD 信号可通过配置从 GPIO 输出,当 CD 信号置高时,RSSI INT 中断标志位将置'1'。

16.6 AFC及晶振的校准功能

在接收与发送之间,由于使用晶振的自身因素、温度、电压工作环境等变化的原因,可能造成收发晶振的频率不一致,进而引起收发两端的载波频偏。

芯片在接收端提供载波频偏自动补偿功能(AFC),可通过 AFC_EN(0x25)寄存器使能。

AFC 补偿范围为+/-20kHz,在 433MHz 的工作频段,补偿范围约为+/-40ppm。由于该补偿范围包括了收发两端的晶振偏差,则对于单端晶振,其频率变化需控制在+/-20ppm 以内。

晶振校准寄存器为 XOSC CAL(0x37),设置值支持 0x00 至 0xFF,步长约 15Hz。

16.7 有效/无效前导检测

芯片提供有效前导码的检测功能。在有效前导检测长度时间内若发现有效前导序列,有效前导检测中断标志 PREDET_INT 将置'1',有效前导检测长度可以通过寄存器 PRENUM(0x24)配置。

接收端前导码检测的长度必须小于发送数据的前导序列,考虑到 AGC 及 AFC 功能的时间开销,推荐接收前导检测的长度应比发送前导序列少8~16bits。默认的前导检测长度为32bits。

为方便跳频应用,芯片还提供无效前导的检测功能。在无效前导检测长度时间(详见 0x24 寄存器说明)内若未发现有效前导序列,则无效前导检测中断标志 INVPREDET_INT 将置'1',无效前导检测长度可配置 INV_PRENUM 寄存器(0x24),默认的 INV_PRENUM 设置长度为 16bits。

通过配置中断使能 PREDET_IE/INVPREDET_IE 或 GPIO 功能寄存器,有效前导检测中断标志 PREDET_INT 及无效前导检测中断标志 INVPREDET_INT 可以通过 IRQ 或任意 GPIO 管脚输出。

16.8 有效/无效SFD检测

芯片支持 1~6bytes 可配置长度的 SFD 地址,长度可通过 SYNCWORD_LEN 寄存器设置,地址可通过寄存器 0x14~0x1A 设置。PRX 在接收到可同步的 SFD 地址后,中断标志 SFDDET INT 将置'1'。

为方便软件跳频等应用,PRX 在检测到有效前导之后,若在 INVSFD_TIME (0x4F) 设定时间长度内没有检测到有效 SFD,无效 SFD 中断标志 INVSFDDET_INT 将置'1'。

通过配置中断使能 SFDDET_IE/INVSFDDET_IE 或 GPIO 功能寄存器,有效 SFD 中断标志 SFDDET_INT 及无效 SFD 中断标志 INVSFDDET_INT 可以通过 IRQ 或任意 GPIO 管脚输出。

16.9 低功耗接收模式

芯片提供低功耗的接收模式,可通过设置寄存器 LP_ENABLE (0x25) 使能该工作模式。 在低功耗接收模式下,接收功耗约为正常接收功耗的:

HOP_TIMER/(HOP_TIMER+LP_TIMER)

第 17 章 RF收发器—寄存器

17.1 寄存器列表

地址	寄存器名称	功能说明	复位值
0x00	RFID	RF ID 版本号	-
0x01	TRCTRL	收发使能寄存器	0x0000
0x02	PKTCTRL	帧结构选择寄存器	0xC000
0x03	PKTCFG0	帧配置寄存器 0	0x4008
0x04	CRCSEED	CRC 移位寄存器初始值寄存器	0xFFFF
0x05	PKTCFG1	帧配置寄存器 0	0x11FF
0x06	FIFOTHRES	FIFO 阈值寄存器	0x1010
0x07	TXPHR0	增强型帧结构发送 PHR0 寄存器	0x0100
0x08	TXPHR1	增强型帧结构发送 PHR1 寄存器	0x0001
0x09	PSDULEN	增强型帧结构发送 PSDU 长度配置寄存器	0x0100
0x0A	RXPHR0	增强型帧结构接收 PHR 寄存器 0	_
0x0B	RXPHR1	增强型帧结构接收 PHR 寄存器 1	-
0x0C	FIFOCTRL	FIFO 控制寄存器	0x000E
0x0D	LEN0PKLEN	直接 FIFO 帧结构长度配置寄存器	0x0080
0x0E	FIFOSTA	FIFO 状态寄存器	0x0000
0x0F	INT	中断标志位寄存器	-
0x10	INTIE	中断使能寄存器	0x8001
0x11	INTIC	中断标志清'0'寄存器	-
0x12	CRCVAL	CRC 寄存器	0x0000
0x13	PIPECTRL	PIPE 控制寄存器	0x0001
0x14	P0ADDR0	PIPE0 SFD 地址低 16bit	0xF398
0x15	P0ADDR1	PIPE0 SFD 地址中间 16bit	0xF398
0x16	P0ADDR2	PIPE0 SFD 地址高 16bit	0xF398
0x17	P1ADDR0	PIPE1 SFD 地址低 16bit	0xC2C2
0x18	P1ADDR1	PIPE1 SFD 地址中间 16bit	0xC2C2
0x19	P1ADDR2	PIPE1 SFD 地址高 16bit	0xC2C2
0x1A	P23ADDR	PIPE2/PIPE3 SFD 地址低 8bit	0x58A7
0x1B	CHIPSTA0	芯片状态指示寄存器 0	-
0x1C	MODECTRL	芯片模式控制寄存器	0x1046
0x1D	GPIOCFG0	GPIO 配置寄存器 0	0xC0C0
0x1E	GPIOCFG1	GPIO 配置寄存器 1	0xCFDF
0x1F	WDTCFG0	WDT 配置寄存器 0	0x0010
0x20	WDTCFG1	WDT 配置寄存器 1	0x0081
0x21	WDTWDV	WDT 计数值指示寄存器	-
0x22	AGCGAIN	AGC 指示寄存器	-
0x23	RSSI	RSSI 指示寄存器	-

0x24	PREACFG	Preamble 配置寄存器	0x0208
0x25	MODEMCTRL	MODEN 控制寄存器	0x1201
0x26	IFSET	中频设置寄存器	0x2CCD
0x27	CDTH	CD 阈值寄存器	0x8281
0x28	CHCFG0	CHANNEL 配置寄存器 0	0x0000
0x29	CHCFG1	CHANNEL 配置寄存器 1	0x0000
0x2A	CHCFG2	CHANNEL 配置寄存器 2	0x0000
0x2B	CHCFG3	CHANNEL 配置寄存器 3	0x0000
0x2C	DEVIATION	调制频偏设置寄存器	0x003F
0x2D	HOPCFG	跳频配置寄存器	0x1566
0x2E	FILTERBAND	接收滤波器带宽设置寄存器	0x004A
0x2F	FREQCFG0	频点设置寄存器 0	0x325C
0x30	FREQCFG1	频点设置寄存器 1	0x0000
0x31	FREQCFG2	频点设置寄存器 2	0x0000
0x32	SYMRATE0	数据数率配置寄存器 0	0x0051
0x33	SYMRATE1	数据数率配置寄存器 1	0x00EC
0x35	RFCFG	模拟前端配置寄存器	0x3332
0x36	CHIPSTA1	芯片状态指示寄存器 1	-
0x37	XOSCCAL	晶振校准寄存器	0x0080
0x38	RCCFG0	RC 校准配置寄存器 0	0x18C3
0x39	RCSTA	RC 校准状态寄存器	-
0x3A	RCCFG1	RC 校准配置寄存器 1	0x002A
0x3C	HOPSPACE0	跳频频点间隔设置寄存器 0	0x0000
0x3D	HOPSPACE1	跳频频点间隔设置寄存器 0	0x7E08
0x3E	RSSICFG	RSSI 配置寄存器	0x021D
0x3F	HOPCH	跳频频点指示寄存器	-
0x40	PACFG	PA 配置寄存器	0x003F
0x45	ACKCFG	ACK 配置寄存器	0x30FF
0x4D	FIFOPTR	FIFO 指针寄存器	0x0000
0x4E	LEN0RXADD	直接 FIFO 帧结构接收补偿寄存器	0x0003
0x4F	INVSFDTIME	无效 SFD 延时计数寄存器	0x0020
0x60	SFTRST0	软件复位寄存器 0	-
0x61	SFTRST1	软件复位寄存器 1	-
0x6F	REGCHECK	寄存器与 FIFO 写入数据校验寄存器	0x0000
0x70	FIFODATA	FIFO 访问寄存器	-

表 17-1 寄存器列表

V1.5 290/352

17.2 寄存器说明

寄存器	RFID							
地址		0x00						
复位值		-						
位名称	位	位 读写 位说明 1 0						
RF_VER_ID	15:0	R	RF ID 版本号		-			

表 17-2 RFID 寄存器说明

寄存器		TRCTRL							
地址			0x01						
复位值			0x0000						
位名称	位	读写	位说明	1	0				
-	15:9	15:9							
DBUS_TXEN	8	R/W	发送使能 (DBUS_TXEN 与 发送使能 DBUS_RXEN 不能同时设为'1')		发送关闭				
DBUS_RXEN	7	R/W	接收使能 (DBUS_TXEN 与 DBUS_RXEN 不能同时设为'1')	接收使能	接收关闭				
-	6:0	-	-	-					

表 17-3 TRCTRL 寄存器说明

注:关闭发送或接收使能后需等待 3*Tsymb 以上的时间间隔后(等待 $FSM_IDLE='1'$ 之后)才能再次使能发送或接收。 Tsymb 为数据速率周期,如数据速率为 10Kbps,则 Tsymb = $100~\mu$ s。

寄存器	PKTCTRL								
地址		0x02							
复位值		0xC000							
位名称	位	读	位说明	1	0				
		写							
	15	R/W	芯片帧模式选择位	增强型帧结构	直接 FIFO				
PACK_LENGTH_EN	10	17///			帧结构				
			直接 FIFO 帧结构	读写指针相等	发送长度按				
LEN0_TXMODE	14	R/W	发送完成模式配置	时发送结束	LEN0_PKLEN 设				
					置值发送				
LEN0_TXCWMODE	13	R/W	单载波发送模式使能位	使能	不使能				
				CRC 由	CRC 由				
LEN1_CRCSEL	12	R/W	增强型帧结构模式下	软件生成	硬件生成				
			CRC 生成配置	(自动 ACK 使能					
				情况下不支持)					
-	11:9	R/W	-		-				
				接收长度按	芯片自动识别包				
	8	R/W	直接 FIFO 帧结构	LEN0_PKLEN	长度进行接收				
LEN0_RXMODE			接收完成模式配置	设置值接收	(详见 12.2 章节描				
					述)				
-	7:6	-	-		-				
			SFD 同步前提条件	00:valid preambl	e				
SFD_OPT	5:4	R/W	选择配置	01:valid CD					
				10/11:NONE					
				00/11: NRZ					
PACK_TYPE 3:2		R/W	芯片编码方式选择	01: Manches	7 ·				
				10: 8bit/10bit line code					
	1	R/W	FEC2/3 使能信号	使能	不使能				
FEC_ON		1000	(只针对增强型帧结构)						
SCRAMBLE_ON	0	R/W	白化使能信号	使能	不使能				

表 17-4 PKTCTRL 寄存器说明

寄存器名称		PKTCFG0						
地址			0x03					
复位值			0x4008					
位名称	位	读写	位说明	1	0			
SYNCWORD_LEN	15:13	R/W	O00/00 010: 3 05FD 长度 (SFD 地址设置寄存器为 0x14~0x1A) 101: 4		1: 禁用 2 bytes 3 bytes 4 bytes 5 bytes : 6 bytes			
PREAMBLE_MODE	12	R/W	发送前导序列 模式选择位	发送序列 10101010	发送序列 01010101			
-	11:10	-						
PREAMBLE_LEN	9:0	R/W	前导长度 (支持 4~1023bytes)	10'h0~10'h4: 4 bytes Others: given value used as length				

表 17-5 PKTCFG0 寄存器说明

寄存器		CRCSEED						
地址		0x04						
复位值		0xFFFF						
位名称	位	位 读写 位说明 1 0						
CRC_INIT_DATA	15:0	R/W	CRC 移位寄存器初始值	-				

表 17-6 CRCSEED 寄存器说明

寄存器名称	PKTCFG1							
地址		0x05						
复位值		0x11FF						
位名称	位	读写	位说明	1	0			
	15:12	SFD 接收 建议设为'0'或						
SYNC_THRES	15.12	R/W	允许错误个数阈值					
-	11:9	ı	-	-				
SCRAMBLE_DATA	8:0	R/W	白化初始值	-				

表 17-7 PKTCFG1 寄存器说明

寄存器名称	FIFOTHRES								
地址		0x06							
复位值	0x1010								
位名称	位	读写	位说明	1	0				
EMPTY_THRES	15:8	R/W	FIFO0 半空阈值	-					
FULL_THRES	7:0	R/W	N FIFOO 半满阈值 -						

表 17-8 FIFOTHRES 寄存器说明

寄存器名称				TXPHR0	
地址				0x07	
复位值				0x0100	
位名称	位	读写	位说明	1	0
-	15:9	R/W	-		-
AUTO_PHR_VERIFY	8	R/W	增强型帧结构 PHR 校验位模 式选择	硬件依据 PHR 前 3 个 bytes 自动计算校验 值进行发送	软件填写 PHR 校验值, 填写寄存器为 TX_PHR_VERIFY。 (ACK 功能使能时不支持)
TX_PHR_VERIFY	7:0	R/W	增强型帧结构 软件填写 PHR 校验值寄存器		-

表 17-9 TXPHR0 寄存器说明

寄存器名称	TXPHR1					
地址			0x08			
复位值			0x0001			
位名称	位	位 读写 位说明 1 0				
	15:8	R/W	增强型帧结构发送帧信道索	-		
TX_PHR_CHANNEL_INDEX	15.0 R/W	引,发送前由软件填写。				
				ACK 使育		
				 增强型帧结构发送帧标准识	bit7~bit5	为PID与
TX_PHR_STD_IDEF	7:0	R/W	增强至帧结构及这帧标准以 别号,发送前由软件填写。	NOACK 1	指示位,该	
			加力,及心則田扒什填与。	3bits 寄存	了器设置无	
				效,详见表 7-2 说明。		

表 17-10 TXPHR1 寄存器说明

寄存器名称	PSDULEN						
地址			0x09				
复位值			0x0100				
位名称	位	读写	位说明	1	0		
-	15:9	-	-	-			
AUTO_LEN_CALC	8	R/W	增强型帧结构 硬件自动计算所填 FIFO内 PSDU 长度使能位	硬件自动计 算 PSDU 长 度	软件填写 PSDU 长度,填 写寄存器为 TXPSDU_LEN		
TXPSDU_LEN	7:0	R/W	增强型帧结构 软件填写 PSDU 长度	最大设置值为 252 bytes,最终 发送的PHR 帧长硬件自动加 3, 设置值>252 按 252 处理。			

表 17-11 PSDULEN 寄存器说明

寄存器名称	RXPHR0					
地址		0x0A				
复位值		-				
位名称	位	读写	位说明	1	0	
	15:8	R	增强型帧结构接收帧长		-	
RX_PHR_PSDU_LEN	10.0	K	(长度为实际 PSDU 长度加 3)			
RX_PHR_CHANNEL_INDEX	7:0	R	增强型帧结构接收信道索引		-	

表 17-12 RXPHR0 寄存器说明

寄存器名称		RXPHR1				
地址		0x0B				
复位值		-				
位名称	位	读写	位说明	1	0	
RX_PHR_STD_IDEF	15:8	R	增强型帧结构接收标准识别号		-	
RX_PHR_VERIFY	7:0	R	增强型帧结构接收 PHR 校验		-	

表 17-13 RXPHR1 寄存器说明

寄存器名称			FIFOCTRL				
地址		0x0C					
复位值		0x000E					
位名称	位	读写	位说明	1	0		
PRX_PHR_ERR	15	R	接收 PHR 校验出错标志位 (只针对增强型帧结构,并且 AUTO_PHR_VERIFY ='1'时有效)	错误	正确		
PRX_CRC_ERR	14	R	接收 CRC 校验出错标志位 (只针对增强型帧结构)	错误	正确		
PRX_FEC23_ERR	13	R	接收 FEC 校验出错标志位 (只针对增强型帧结构)	错误	正确		
PRX_LEN0RXLEN_ERR	12	R	直接 FIFO 帧结构硬件自动识别帧长信息接收模式下接收帧长信息错误标志位(只针对直接 FIFO 帧结构)	错误	正确		
PRX_FIFO0_PIPE	11:9	R	PRX FIFO0 中 数据所属的 PIPE	000: PIPE0 001: PIPE1 010: PIPE2 011: PIPE3 Others:无效			
PRX_FIFO0_OCPY	8	R	PRX FIFO0 数据填写 完成信号	PRX FIFO0 被占用	PRX FIFO0 未被占用		
-	7:5	-	-	-			
PTX_FIFO0_NOACK	4	R/W	告知 PRX 当前帧无需 ACK (只针对增强型帧结构)	NACK	ACK		
PTX_FIFO0_PIPE	3:1	R/W	PTX FIFO0 中 数据所属的 PIPE (发送前由软件填写)	000: PIPE0 001: PIPE1 010: PIPE2 011: PIPE3 Others:无效			
PTX_FIFO0_OCPY	0	W	FIFO 填写完成后, 软件置'1'指示发送 FIFO 有 效,等待发送。	指示发送 FIFO 有效	无效操作		

表 17-14 FIFOCTRL 寄存器说明

寄存器名称	LEN0PKLEN							
地址		0x0D						
复位值		0x0080						
位名称	位	读写	位说明	1	0			
LEN0_PKLEN	15:0	R/W	R/W PTX:直接 FIFO 帧结构发送长度配置 最大可		可支持			
			PRX:直接FIFO帧结构接收长度配置	6553	5 bytes			

表 17-15 LENOPKLEN 寄存器说明

寄存器名称			FIFOSTA			
地址		0x0E				
复位值			0x0000			
位名称	位	读写	位说明	1	0	
DYZEDO LEN	15	R	PRX 接收到长度为 0 的	接收到帧长	接收到帧长度	
RXZERO_LEN	15	K	帧指示位	度为0	不为 0	
FIFO0_EMPTY	14	R	FIFO0 为空指示位	FIFO0 为空	FIFO0 不为空	
			直接 FIFO 帧结构 FIFO 填	溢出	未溢出	
			写溢出(>256bytes)标志			
WR_PTR_OV	13	R	位,可由 CLR_WR_PTR			
			清'0'或 RD_PTR_OV 置'1'			
			时自动清'0'。			
			直接 FIFO 帧结构 FIFO 读	溢出	未溢出	
			取溢出(>256bytes)标志			
RD_PTR_OV	12	R	位,可由 CLR_RD_PTR			
			清'0'或WR_PTR_OV置'1'			
			时自动清'0'。			
FIFO0_OCPY	11	R	FIFO 被占用指示位	被占用	未被占用	
			发送 FIFO 达到	发送 FIFO 达	发送 FIFO 未	
MAXTXLEN	10	R	最大发送度	到最大发送	达到最大发送	
			(只针对增强型帧结构)	度	度	
CLR_RD_PTR	9	W	FIFO 读指针清'0'	读指针清'0'	无效操作	
CLR_WR_PTR	8	W	FIFO 写指针清'0'	写指针清'0'	无效操作	
-	7:5	-	-		-	
				0:FIFO 的第一	一个 byte 为包长	
			直接 FIFO 帧结构若包长	高 byte,第二	个 byte 为包长	
LEN0_PKLENPOLAR			信息设置为2个 bytes,高	低 byte		
	4	R/W	低 byte 配置位。	1:FIFO 的第一	一个 byte 为包长	
			(LEN0_RXMODE='0'芯片自	低 byte,第二	个 byte 为包长	
			动识别帧长接收模式下有效)	高 byte		
				(详细参考 1	2.2 章节说明)	
			直接 FIFO 帧结构包长信	2 个 bytes	1 个 byte	
LEN0_PKLENBYTS	3	R/W	息占用的 byte 数			
			(LEN0_RXMODE='0'芯片自			

			动识别帧长接收模式下有效)	
LEN0_PKLENPOS	2:0	R/W	直接 FIFO 帧结构包长信息所在 FIFO 的起始位置	000: byte1 001: byte2
	2.0	17///	(LEN0_RXMODE='0'芯片自	
			动识别帧长接收模式下有效)	111: byte8

表 17-16 FIFOSTA 寄存器说明

寄存器名称	INT								
地址		0x0F							
复位值			-						
位名称	位	读写	位说明	1	0				
POR_INT	15	R	POR 中断标志位 (芯片上电后需将此标志位清'0')	中断	无中断				
CHIPRDY_INT	14	R	芯片内部时钟 ready, 可进行收发操作中断标志位(使用前需软件清'0')	中断 (芯片上电、软件复 位或从SLEEP退出 时钟恢复后置'1')	无中断				
SFDDET_INT	13	R	检测到有效的 SFD 中断标志位 (芯片再次切换为接收状态约 250 μ s 后 自动清'0'或由 SFDDET_IC 软件清'0')	中断	无中断				
PREDET_INT	12	R	检测到有效的前导中断标志位 (芯片再次切换为接收状态自动清'0'或 由 PREDET_IC 软件清'0')	中断	无中断				
EXT0_INT	11	R	GPIO0 外部中断标志位	中断	无中断				
EXT1_INT	10	R	GPIO1 外部中断标志位	中断	无中断				
EXT2_INT	9	R	GPIO2 外部中断标志位	中断	无中断				
EXT3_INT	8	R	GPIO3 外部中断标志位	中断	无中断				
INVSFDDET_INT	7	R	检测到无效的 SFD 中断标志位 (芯片再次切换为接收状态约 250 μ s 后 自动清'0'或由INVSFDDET_IC软件清'0')	中断	无中断				
WDT_INT	6	R	WDT 中断标志位	中断	无中断				
HALF_FULL_INT	5	R	FIFO 半满中断标志位 (接收端 MCU 读 RX FIFO 至不满足半满 条件自动清'0',详见 6.1.2 章节描述)	中断	无中断				
HALF_EMPTY_INT	4	R	FIFO 半空中断标志位 (发送端 MCU 写 TX FIFO 至不满足半空 条件自动清'0',详见 6.1.2 章节描述)	中断	无中断				
RSSI_INT	3	R	RSSI 中断标志位 (芯片再次切换为接收状态约 250 µ s 后 自动清'0'或由 RSSI_IC 软件清'0')	中断	无中断				
INVPREDET_INT	2	R	无效的前导中断标志位 (芯片再次切换为接收状态约 250 µ s 后	中断	无中断				

			自动清'0'或由 INVPREDET_IC 软件		
			清'0')		
			PTX 重传超时标志位	重传超时	未超时
FIFO0_MAX_RETX	1	R	(只作为标志位使用,非中断,		
			只针对增强型帧结构)		
			FIFO 中断标志位(具体详见10.2章节)	中断	无中断
FIFO0_INT	0	R	PTX:发送完成或发送超时		
			PRX:接收完成或发送 ACK 完成		

表 17-17 INT 寄存器说明

寄存器名称			INTIE					
地址		0x10						
复位值			0x8001					
位名称	位	读写	位说明	1	0			
POR_IE	15	R/W	POR 中断使能	从IRQ输出	不输出			
CHIPRDY_IE	14	R/W	CHIPRDY_INT 中断使能	从IRQ输出	不输出			
SFDDET_IE	13	R/W	SFDDDET_INT 中断使能	从IRQ输出	不输出			
PREDET_IE	12	R/W	PREDDET_INT 中断使能	从IRQ输出	不输出			
EXT0_IE	11	R/W	GPIO0 外部中断使能	从IRQ输出	不输出			
EXT1_IE	10	R/W	GPIO1 外部中断使能	从IRQ输出	不输出			
EXT2_IE	9	R/W	GPIO2 外部中断使能	从IRQ输出	不输出			
EXT3_IE	8	R/W	GPIO3 外部中断使能	从IRQ输出	不输出			
INVOEDDET IE	7	R/W	INVSFDDET_INT	从IRQ输出	不输出			
INVSFDDET_IE	1	FC/VV	中断使能					
WDT_IE	6	R/W	WDT_INT 中断使能	从IRQ输出	不输出			
HALF_FULL_IE	5	R/W	半满中断使能	从IRQ输出	不输出			
HALF_EMPTY_IE	4	R/W	半空中断使能	从IRQ输出	不输出			
RSSI_IE	3	R/W	RSSI_INT 中断使能	从IRQ输出	不输出			
INVPREDET IE	2	R/W	INVPREDDET_INT	从IRQ输出	不输出			
INVENCED LIZIC		10,44	中断使能					
			DIRECT 模式	从IRQ输出	不输出			
DIRECT_IE	1	R/W	时钟输出中断使能					
DIIXEO1_IE	'	1000	(发送端为数据发送时钟,接					
			收端为数据接收时钟)					
FIFO0INT_IE	0	R/W	FIFO0_INT 中断使能	从IRQ输出	不输出			

表 17-18 INTIE 寄存器说明

寄存器名称	INTIC							
地址	0x11							
复位值			-					
位名称	位	读写	位说明	1	0			
POR_IC	15	W	POR 中断清'0'信号	清'0'	无效操作			
CHIPRDY_IC	14	W	CHIPRDY_INT 中断 清'0'信号	清'0'	无效操作			
SFDDET_IC	13	W	SFDDDET_INT 中断 清'0'信号	清'0'	无效操作			
PREDET_IC	12	W	PREDDET_INT 中断 清'0'信号	清'0'	无效操作			
EXT_IC	11	W	外部中断清'0'信号	清'0'	无效操作			
-	10:8	-	-		-			
INVSFDDET_IC	7	W	INVSFDDET 中断 清'0'信号	清'0'	无效操作			
WDT_IC	6	W	WDT_INT 中断 清'0'信号	清'0'	无效操作			
-	5:4	-	-		-			
RSSI_IC	3	W	RSSI_INT 中断 清'0'信号	清'0'	无效操作			
INVPREDET_IC	2	W	INVPREDDET_INT 中断清'0'信号	清'0'	无效操作			
	1	-	-	-				
FIFO0INT_IC	0	W	FIFO0_INT 中断 清'0'信号	清'0'	无效操作			

表 17-19 INTIC 寄存器说明

寄存器名称		CRCVAL					
地址		0x12					
复位值		0x0000					
位名称	位	读写	位说明	1	0		
CRCVAL	15:0	W	CRC 数值寄存器 (只针对增强型帧结构)	软件填写的发 bit 在前,低	d送 CRC,高 bit 在后。		

表 17-20 CRCVAL 寄存器说明

寄存器名称	PIPECTRL					
地址			0x13			
复位值			0x0001			
位名称	位	读写	位说明	1	0	
-	15:8	-	-		-	
P3_ACKEN	7	R/W	PIPE3自动ACK使能信号	使能	不使能	
P2_ACKEN	6	R/W	PIPE2自动ACK使能信号	使能	不使能	
P1_ACKEN	5	R/W	PIPE1自动ACK使能信号	使能	不使能	
P0_ACKEN	4	R/W	PIPE0自动ACK使能信号	使能	不使能	
P3_EN	3	R/W	PIPE3 使能信号	使能	不使能	
P2_EN	2	R/W	PIPE2 使能信号	使能	不使能	
P1_EN	1	R/W	PIPE1 使能信号	使能	不使能	
P0_EN	0	R/W	PIPE0 使能信号	使能	不使能	

表 17-21 PIPECTRL 寄存器说明

寄存器名称	P0ADDR0					
地址		0x14				
复位值		0xF398				
位名称	位	读写	位说明	1	0	
P0_ADDR[15:0]	15:0	R/W	PIPE0 SFD 地址 低 16 位		-	

表 17-22 POADDRO 寄存器说明

寄存器名称	P0ADDR1					
地址		0x15				
复位值		0xF398				
位名称	位	读写	位说明	1	0	
P0_ADDR[31:16]	15:0	R/W	PIPE0 SFD 地址 中间 16 位		-	

表 17-23 P0ADDR1 寄存器说明

寄存器名称	P0ADDR2					
地址		0x16				
复位值	0xF398					
位名称	位	读写	位说明	1	0	
P0_ADDR[47:32]	15:0	R/W	PIPE0 SFD 地址 高 16 位		-	

表 17-24 POADDR2 寄存器说明

V1.5 301/352

寄存器名称	P1ADDR0					
地址		0x17				
复位值		0xC2C2				
位名称	位	读写	位说明	1	0	
P1_ADDR[15:0]	15:0	PIPE1 SFD 地址 -				

表 17-25 P1ADDR0 寄存器说明

寄存器名称	P1ADDR1					
地址		0x18				
复位值	0xC2C2					
位名称	位	读写	位说明	1	0	
P1_ADDR[31:16]	15:0	R/W	PIPE1 SFD 地址 中间 16 位		-	

表 17-26 P1ADDR1 寄存器说明

寄存器名称	P1ADDR2					
地址		0x19				
复位值		0xC2C2				
位名称	位	读写	位说明	1	0	
P1_ADDR[47:32]	15:0	R/W	PIPE1 SFD 地址 高 16 位		-	

表 17-27 P1ADDR2 寄存器说明

寄存器名称		P23ADDR						
地址			0x1A					
复位值			0x58A7					
位名称	位	位 读写 位说明 1 0						
P2_ADDR[7:0]	15:8	PIPE2 SFD 地址低 8 位 -						
P3_ADDR[7:0]	7:0	R/W	PIPE3 SFD 地址低 8 位 PIPE3 SFD 完整地址 { P1_ADDR[47:8],P3_ADDR[7:0]}		-			

表 17-28 P23ADDR 寄存器说明

寄存器名称			CHIPSTA0		
地址			0x1B		
复位值			-		
位名称	位	读写	位说明	1	0
FSM_IDLE	15	R	芯片 IDLE 状态指示位	IDLE 状态	非 IDLE 状态
-	14:13	-	-	-	-
FSM_SLEEP	12	R	芯片 SLEEP 状态指示位	SLEEP 状态	非 SLEEP 状态
-	11:7	-	-		-
PADN_DONE	6	R	PA ramp down 完成指示位	完成	未完成
PAUP_DONE	5	R	PA ramp up 完成指示位	完成	未完成
LOCK_DET	4	R	PLL 锁定指示位	完成	未完成
-	3:0	R	-		-

表 17-29 CHIPSTA0 寄存器说明

寄存器名称			MOD	ECTRL					
地址		0x1C							
复位值			0x1046						
位名称	位	读写	位说明	1	0				
SLEEP_ON	15	R/W	芯片进入 SLEEP 模式控制信号	进入 SLEEP 模式	退出 SLEEP 模式				
-	14	-	-	-					
LPFEN	13	R/W	低功耗输出模式 控制信号	芯片进入 SLEEP 模 式后 GPIO 自动切 换为 RC 时钟输出 (GPIOn_FUN 需配置 为 5'b01111)	芯片进入 SLEEP 模式后 GPIO 不输 出时钟 (除 CLKCFG 配置 为4'b0111 情况)				
PKT_HINT_PORITY	12	R/W	IRQ 中断极性 选择配置	由"1"变为"0"	由"0"变为"1"				
REP_MODE	11	R/W	直接发送模式 发送 "0101" 序列	使能	不使能				
PN9_MODE	10	R/W	直接发送模式 发送 PN9 序列	使能	不使能				
BPKTCTL_DIRECT	9	R/W	直接收发模式 控制信号 (详见 8.3 章节)	使能	不使能				
DIRECT_MODE	8	R/W	Direct 模式 使能信号	使能	不使能				
GPIO0_PORITY	7	R/W	GPIO0 有效电平配置	输出反向	输出不反向				
GPIO1_PORITY	6	R/W	GPIO1	输出反向	输出不反向				

			有效电平配置			
CDIO2 DODITY	5	R/W	GPIO2	输出反向	输出不反向	
GPIO2_PORITY	3	F/VV	有效电平配置			
GPIO3_PORITY	4	R/W	GPIO3	输出反向	输出不反向	
GPIO3_PORTT	4	FC/VV	有效电平配置			
				x000: fxtal		
				0001: fxtal /2		
				0010: fxtal /4		
				0011: fxtal /8		
				0100: fxtal /16		
CLKCFG	3:0	R/W	GPIO 时钟输出频率配置	0101: fxtal /32		
				0110: fxtal /64		
				0111: frc(WDT_EN= '1'有效)		
				others:不输出		
				fxtal 为主晶振时钟频率,frc 为 RC 时钟		
				频率		

表 17-30 MODECTRL 寄存器说明

寄存器名称			GI	PIOCFG0				
地址	0x1D							
复位值		0xC0C0						
位名称	位	读写	位说明	1	0			
GPIO0_DS	15	R/W	gpio0 驱动能力选择位	大电流驱动	正常模式			
0. 100_50	10	1000	9pico 4E9416E/17E17 E.	模式				
GPIO0_IE	14	R/W	gpio0 输入使能	使能	不使能			
GPIO0_PE	13	R/W	gpio0 上拉使能	上拉	不上拉			
				00000: POR(O)				
				00001: Wake-Up Timer :1 when WUT has expired (O)				
				00010: TX clock output (O)				
				00011: Direct Mode TX data input (I)				
				00100: RX clock output (O)				
				00101: RX data(O)				
				00110: TX state(O)				
				00111: RX state(O)				
GPIO0_FUN	12:8	R/W	gpio0 功能选择位	01000: TX FIFO almost empty(O)				
				01001: RX FIFO almost full(O)			
				01010: SFD detected(O)				
				01011: CD(O)				
				01100: Valid preamble detected(O)				
				01101: Invalid SFD detected	(O)			
				01110: Invalid preamble detected(O)				
				01111: chip clock output, configed by clkcfg (O)				
				10000: External Interrupt, fal	ling edge(I)			

				10001: External Interrupt, ris	sing edge(I)	
				10010: External Interrupt, sta	ate change (I)	
				10011: Analog Output (O)		
				10100; TX data(O)		
				<10101~10111>: VSS		
				<11000~11011>: VDD		
				11100~11110: reserved(O)		
				11111: reserved(I)		
00104 00	1	544/	• 4 7F-1.4V 1.14 47 P-	大电流驱动	正常模式	
GPIO1_DS	7	R/W	gpio1 驱动能力选择位	模式		
GPIO1_IE	6	R/W	gpio1 输入使能	使能	不使能	
GPIO1_PE	5	R/W	gpio1 上拉使能	上拉	不上拉	
				00000: POR(O)		
				00001: Wake-Up Timer :1 wh	nen WUT has expired (O)	
				00010: TX clock output (O)		
				00011: Direct Mode TX data input (I)		
				00100: RX clock output (O)		
				00101: RX data(O)		
				00110: TX state(O)		
				00111: RX state(O)		
				01000: TX FIFO almost emp	oty(O)	
				01001: RX FIFO almost full(0)	
				01010: SFD detected(O)		
			 gpio1 功能选择位	01011: CD(O)		
GPIO1_FUN	4:0	R/W	gpio i 对形处许位	01100: Valid preamble detected(O)		
				01101: Invalid SFD detected	(O)	
				01110: Invalid preamble dete	ected(O)	
				01111: chip clock output, cor	nfiged by clkcfg (O)	
				10000: External Interrupt, fal	lling edge(I)	
				10001: External Interrupt, ris	ing edge(I)	
				10010: External Interrupt, sta	ate change (I)	
				10011: Analog Output (O)		
				10100; TX data(O)		
				<10101~10111>: VSS		
				<11000~11011>: VDD		
				11100~11110: reserved(O)		
				11111: reserved(I)		

表 17-31 GPIOCFG0 寄存器说明

V1.5 305/352

寄存器名称	GPIOCFG1								
地址		0x1E							
复位值			()xCFDF					
位名称	位	读写	位说明	1	0				
GPIO2_DS	15	R/W	gpio2 驱动能力选择位	大电流驱动 模式	正常模式				
GPIO2_IE	14	R/W	gpio2 输入使能	使能	不使能				
GPIO2_PE	13	R/W	gpio2 上拉使能	上拉	不上拉				
GPIO2_FUN	12:8	R/W	gpio2 功能选择位						
GPIO3_DS	7	R/W	gpio3 驱动能力选择位	大电流驱动 模式	正常模式				
GPIO3_IE	6	R/W	gpio3 输入使能	使能	不使能				
GPIO3_PE	5	R/W	gpio3 上拉使能	上拉	不上拉				
GPIO3_FUN	4:0	R/W	gpio3 功能选择位	00000: POR(O) 00001: Wake-Up Timer :1 when WUT has expired 00010: TX clock output (O) 00011: Direct Mode TX data input (I) 00100: RX clock output (O) 00101: RX data(O) 00110: TX state(O)					

00111: RX state(O)
01000: TX FIFO almost empty(O)
01001: RX FIFO almost full(O)
01010: SFD detected(O)
01011: CD(O)
01100: Valid preamble detected(O)
01101: Invalid SFD detected(O)
01110: Invalid preamble detected(O)
01111: chip clock output, configed by clkcfg (O)
10000: External Interrupt, falling edge(I)
10001: External Interrupt, rising edge(I)
10010: External Interrupt, state change (I)
10011: Analog Output (O)
10100: TX data(O)
<10101~10111>: VSS
<11000~11011>: VDD
11100~11110: reserved(O)
11111: reserved(I)

表 17-32 GPIOCFG1 寄存器说明

寄存器名称		WDTCFG0						
地址		0x1F						
复位值		0x0010						
位名称	位	读写	位说明	1	0			
WDT_WTM	15:0	R/W	Wake-up Timer wtm value		-			

表 17-33 WDTCFG0 寄存器说明

寄存器名称		WDTCFG1				
地址		0x20				
复位值		0x0081				
位名称	位	读写	位说明	1	0	
-	15:8	1	-		-	
WDT_EN	7	R/W	WDT 使能信号	使能	不使能	
-	6:4	-	-	-		
WDT_WTR	3:0	R/W	Wake-up Timer		-	
WDI_WIK		rt/VV	wtr value			

表 17-34 WDTCFG1 寄存器说明

V1.5 307/352

寄存器名称		WDTWDV						
地址		0x21						
复位值		-						
位名称	位	读写	位说明	1	0			
WDT_WDV	15:0	Wake-up Timer 当前计数值						

表 17-35 WDTWDV 寄存器说明

寄存器名称	AGCGAIN						
地址		0x22					
复位值		-					
位名称	位	读写	位说明	1	0		
LAGC_GAIN	15:8	R	AGC 增益档		-		
-	7:0						

表 17-36 AGCGAIN 寄存器说明

寄存器名称	RSSI						
地址		0x23					
复位值		-					
位名称	位	读写	位说明	1	0		
RSSI2	15:8	R	实时 RSSI 值 二进制补码表示		卜码表示		
RSSI1	7:0	R	R 上一个有效数据包的 RSSI 值 二进制补码表示				

表 17-37 RSSI 寄存器说明

寄存器名称		PREACFG							
地址		0x24							
复位值			0x0208						
位名称	位	位 读写 位说明 1 0							
-	15:11	-	-	-					
INV_PRENUM	10:8	R/W	检测无效前导长度 设置寄存器	检测长度为 INV_PRENUM * 8 bits (最终检测无效前导长度为 INV_PRENUM * 8+PRENUM * 4 bits)					
PRENUM	7:0	R/W	检测有效前导长度 设置寄存器	检测长度为 PRENUM * 4 bits 其中 1bits 长度代表 1 个数据速率符 号长度。					

表 17-38 PREACFG 寄存器说明

寄存器名称		MODEMCTRL						
地址		0x25						
复位值			()x1201				
位名称	位	读写	位说明	1	0			
-	15	-	-		-			
CFG_XTCS	14	R/W	外部晶振选择	20MHz 晶振	26MHz 晶振			
BT_MODE	13	R/W	BT参数设置	1	0.5			
GFSK_MODE	12	R/W	GFSK 模式使能信号	使能	不使能			
LP_TIMER	11:8	R/W	低功耗接收模式	T= LP_TIMER * 16Tsymb				
LP_IIIVIER	11.0	IT/VV	时间配置					
-	7:3	R/W	-		-			
	2	2	2	2	R/W	低功耗接收模式	使能	不使能
LP_ENABLE		F/VV	使能信号					
HOP_SEL	1	R/W	跳频有效信号	有效能量	有效前导			
HOP_SEL		FX/ V V	选择配置位					
AFC_EN	0	R/W	AFC 功能使能信号	使能	不使能			

表 17-39 MODEMCTRL 寄存器说明

寄存器名称	IFSET						
地址		0x26					
复位值		0x2CCD					
位名称	位	读写	位说明	1	0		
MIXFW	15:0	R/W	中频设置寄存器 按《AN1045_应用笔记_HW3000 应用注意事项》寄存器配置章节推荐值进行配置				

表 17-40 IFSET 寄存器说明

寄存器名称		CDTH					
地址		0x27					
复位值		0x8281					
位名称	位	读写	位说明	1	0		
CD_TH1	15:8	R/W	载波检测阈值	具体详见 10.2 和 16.5 章节相关说明			
CD_TH2	7:0	R/W	载波检测阈值				

表 17-41 CDTH 寄存器说明

寄存器名称		CHCFG0						
地址		0x28						
复位值		0x0000						
位名称	位	读写	位说明	1	0			
CHANNEL1	15:8	R/W	主信道号		-			
CHANNEL2	7:0	R/W	从信道号 1		-			

表 17-42 CHCFG0 寄存器说明

寄存器名称		CHCFG1									
地址		0x29									
复位值		0x0000									
位名称	位	读写	位说明	1	0						
CHANNEL3	15:8	R/W	从信道号2		-						
CHANNEL4	7:0	R/W	从信道号3		-						

表 17-43 CHCFG1 寄存器说明

寄存器名称		CHCFG2									
地址		0x2A									
复位值		0x0000									
位名称	位	读写	位说明	1	0						
CHANNEL5	15:8	R/W	从信道号 4		-						
CHANNEL6	7:0	R/W	从信道号 5		-						

表 17-44 CHCFG2 寄存器说明

寄存器名称		CHCFG3									
地址		0x2B									
复位值		0x0000									
位名称	位	读写	位说明	1	0						
CHANNEL7	15:8	R/W	从信道号6		-						
CHANNEL8	7:0	R/W 从信道号 7 -									

表 17-45 CHCFG3 寄存器说明

寄存器名称	DEVIATION									
地址		0x2C								
复位值		0x003F								
位名称	位	读写	位说明	1	0					
-	15:10	R/W								
DEVIATION	9:0	R/W 调制频偏设置 具体详见 7.2.2 章节								

表 17-46 DEVIATION 寄存器说明

V1.5 310/352

寄存器名称		HOPCFG								
地址		0x2D								
复位值			0x1	566						
位名称	位	读写	位说明	1	0					
			跳频检测 SFD 时间控制	T= SFD_TII	MER * 32Tsymb					
SFD_TIMER	15:8 F	R/W	(发现有效 preamble 后,若							
SFD_IIWIEK	15.6	FC/VV	在设定时间内无有效 SFD,将							
			自动跳至下一个频点。)							
HOP_TIMER	7:4	R/W	跳频时间控制 T= HOP_TIMER * 16Tsymb							
HOP_NUM	3:1	R/W	扫描的信道数目 信道数=HOP_NUM+1							
HOP_ENABLE	0	R/W	跳频接收功能使能信号	使能	不使能					

表 17-47 HOPCFG 寄存器说明

寄存器名称		FILTERBAND								
地址		0x2E								
复位值		0x004A								
位名称	位	读写	位说明	1	0					
-	15:7	5:7								
FILTER2_BAND	6:0	6:0 R/W 接收滤波器带宽设置 具体详见 11.2.4 章节								

表 17-48 FILTERBAND 寄存器说明

寄存器名称		FREQCFG0							
地址		0x2F							
复位值			0x325C						
位名称	位	读写	位说明	1	0				
-	15	1	-	-					
CH_SPACE	14:13	R/W	信道间隔设置	00:100kHz 01: 200kHz 10: 400kHz 11: 800kHz					
RF_FREQ_BASE	12:0	R/W	起始频点设置/ 直接频点设置模式下,整数部分值	-					

表 17-49 FREQCFG0 寄存器说明

寄存器名称		FREQCFG1					
地址		0x30					
复位值		0x0000					
位名称	位	位 读 位说明		1	0		
		写					
RF_PLL_DIRECT	15	R/W	直接设频点	使 能 需 先 设 置	不使能		
==_5	.0		模式使能	RF_FREQ_FRACTION			

V1.5 311/352

				再 设 置 RF_FREQ_BASE。
-	14:5	-	-	-
RF_FREQ_FRACTION[20:16]	4:0	R/W	直接设频点模 式频点小数部 分 bit20~bit16	具体详见 11.1.2 章节

表 17-50 FREQCFG1 寄存器说明

寄存器名称	FREQCFG2					
地址		0x31				
复位值		0x0000				
位名称	位	读写	位说明	1	0	
RF_FREQ_FRACTION[15:0]	15:0	R/W	直接设频点模式 频点小数部分 bit15~bit0	具体详见	11.1.2 章节	

表 17-51 FREQCFG2 寄存器说明

寄存器名称		SYMRATE0					
地址		0x32					
复位值		0x0051					
位名称	位	读写	位说明	1	0		
-	15:10			-			
SYMBOL_RATE[17:8]	9:0	R/W	数据速率设置寄存器	器 具体详见 11.2.1 章节			

表 17-52 SYMRATEO 寄存器说明

寄存器名称		SYMRATE1					
地址		0x33					
复位值		0x00EC					
位名称	位	读写	位说明	1	0		
-	15:8	-	-				
SYMBOL_RATE[7:0]	7:0	7:0 R/W 数据速率设置寄存器 具体详见 11.2.1 章节					

表 17-53 SYMRATE1 寄存器说明

寄存器名称		RFCFG				
地址		0x35				
复位值		0x3332				
位名称	位	读写	位说明	1	0	
-	15	ı	ı	-		
PLL_TRXLB_SEL	14:13	R/W	VCO 输出频率	详见《AN1045_应用笔记_	HW3000 应用注	
PLL_IRALB_SEL	14.13	TX/VV	分频数控制	意事项》3.3 章节相关说明		
VCO HB SEL	12	R/W	高低频 VCO	High freq VCO	Low freq VCO	
VOO_IIB_SEE	12	17///	选择控制位			
-	11	-	-	-		
				000: BW50K		
PLL_LPFR	10:8	R/W	PLL 环路带宽	001: BW75K		
			控制位	011: BW100K		
				111: BW150K		
				0001: 12.5μA		
			电荷泵电流	0010: 25μA		
PLL_CPI	7:4	R/W	控制位	0100: 50µA		
				1000: 100µA		
				0011: 37.5μA	W III	
		D 447	TX/RX	大电流模式	正常模式	
TRXBUF_CUR	3	R/W	BUFFER 电流			
			控制位			
			TX/RX	low load	high load	
TRXBUF_LOAD	2	R/W	BUFFER 负载			
_			驱动能力控制			
			在 TV/DV 八崎県	00 6.4		
			TX/RX 分频器 中 BUFFER 的	00: 6μA		
PLL_TRXBUFI	1:0	R/W	中 BUFFER 的 电流设置	01: 8µA		
			电流 区直	10: 10µA(默认)		
				11: 12µA		

表 17-54 RFCFG 寄存器说明

寄存器名称		CHIPSTA1				
地址			0x36			
复位值			-			
位名称	位	读写	位说明	1	0	
CHIPSTA1	15:0	R/W	芯片状态指示寄存器	SLEEP: 0x0 IDLE: 0x007 TX: 0x008A (使能发送 150 RX: 0x000D (使能接收 150 Others: 异常	7 (µs后) (µs后)	

表 17-55 CHIPSTA1 寄存器说明

寄存器名称	XOSCCAL					
地址		0x37				
复位值	0x0080					
位名称	位	读写	位说明	1	0	
-	15:8	-	-		-	
XOSC_CAL	7:0	R/W	晶振校准寄存器	0xFF: min freq		
				0x00: max f	req	

表 17-56 XOSC 寄存器说明

寄存器名称		RCCFG0					
地址			0x38				
复位值			0x18C3				
位名称	位	读写	位说明	1	0		
RCCODE_SEL	15	R/W	RC 模块校准配置值	软件设置	自动校准		
			选择位				
-	14	14					
WDT_IBIAS	13:12	R/W	32KHz 振荡器电流控制	0x11: max			
WDI_IBIAS				0x00: min			
WDT_CAL	11:0	11:0 R/W RC 软件校准配置值 0xFFF: max freq					
				0x000: min fre	q		

表 17-57 RCCFG0 寄存器说明

寄存器名称			RCSTA		
地址			0x39		
复位值			-		
位名称	位	读写	位说明	1	0
CAL_DONE	15	R	校准完成标志位	校准完成 连续校准模式下 开始下一次校准 非连续校准模 RCCAL_EN	下每间隔约 30s 注前自动清'0'; 其式下,使能
-	14:12	-	-	-	
RCCODE	11:0	R	自动校准 RC 频率控制字	-	

表 17-58 RCSTA 寄存器说明

寄存器名称			RCCFG1					
地址		0x3A						
复位值			0x002A					
位名称	位	读写	位说明	1	0			
-	15:8	-	•	-				
RCCAL_STEN	7	R/W	连续校准模式使能位	使能	不使能			
			(每约 30s 进行一次校准)					
			RC 在新的配置值下	3'b000: 0 个 i	rcclk 周期;			
RCST_DLY	6:4	R/W	再次校准需要等待的时间	••••	•			
				3'b111: 7个 rcclk 周期;				
				3'b000: 忽略控制	引字的低 5 位;			
				3'b001: 忽略控制	引字的低4位;			
				3'b010: 忽略控制	引字的低3位;			
RCCAL_ACC	3:1	R/W	频率控制字有效位选择	3'b011: 忽略控制	引字的低 2 位;			
				3'b100: 忽略控制	引字的低 1 位;			
				3'b101: 使用完	整的控制字;			
				其他:保留;				
RCCAL_EN	0	W	RC 校准使能位	使能	无效操作			

表 17-59 RCCFG1 寄存器说明

寄存器名称	HOPSPACE0				
地址				0x3C	
复位值			C	0x0000	
位名称	位	读写	位说明	1	0
-	-	-	-	-	
			跳频频点间隔设	HOP_SPACE[1	9:0]=round((fh*
			置寄存器 0	k _{freq} /fosc)*2^20), ‡	其中 fh 为需要的扫
HOP_SPACE[19:16]	3:0	R/W	(RF_PLL_DIRECT	描频率间隔, k freq ¹	取值详见数据手册
			= '1'时有效)	11.1.3 介绍,fosc 为	7晶振频率,默认设
				置 fh 为 200kHz,	fosc 为 26MHz

表 17-60 HOPSPACE0 寄存器说明

寄存器名称			HOPSPA	CE1		
地址		0x3D				
复位值		0x7E08				
位名称	位	读写	位说明	1	0	
			跳频扫频间隔设置	HOP_SPACE[19:	0]=round((fh*	
			寄存器 1	k _{freq} /fosc)*2^20),	其中 fh 为需	
HOD SDACE(15:01	15:0	R/W	(RF_PLL_DIRECT = '1'	要的扫描频率间隔	扇, k_{freq} 取值详	
HOP_SPACE[15:0]	13.0	IN/ V V	时有效)	见数据手册 11.1.	3 介绍,fosc	
				为晶振频率,默	认设置 fh 为	
				200kHz, fosc	为 26MHz	

表 17-61 HOPSPACE1 寄存器说明

寄存器名称		RSSICFG				
地址			0x3E			
复位值			0x021D			
位名称	位	读写	位说明	1	0	
-	15:11	-	-	-		
RSSI2_LEN	10:8	R/W	RSSI 的计算长度	000: 128 μ s 001: 256 μ s 010: 512 μ s 011/100: reserv Others: 4096 μ		
RSSI2_OFFSET	7:0	R/W	RSSI 的偏差补偿	-		

表 17-62 RSSICFG 寄存器说明

寄存器名称		НОРСН				
地址			0x3F			
复位值			-			
位名称	位	读写	位说明	1	0	
			跳频所在当前 channel	-		
HOP_CH	15:8	R	(寄存器指示跳频所在当前			
	15.6		channel 寄存器的设定值,接			
			收完成后返回主信道)			
LOCK_CH			跳频锁定的 channel	可在检	测到	
	7:0	R	(寄存器指示跳频锁定	有效前导之	之后读取	
			channel 寄存器的设定值)			

表 17-63 HOPCH 寄存器说明

寄存器名称		PACFG						
地址		0x40						
复位值		0x003F						
位名称	位	读写	位说明	1	0			
PA_VB2	15:12	R/W	输出功率设置寄存器 2	-				
PA_VB1	11:8	R/W	输出功率设置寄存器 1	-				
-	7:6	-	-	-				
PA_SET	5:0	R/W	PA ramp 档位设置	设置值支持0	x01~0x3F			

表 17-64 PACFG 寄存器说明

寄存器名称		ACKCFG				
地址		0x45				
复位值			0x3	30FF		
位名称	位	读写	位说明	1	0	
	15:12	R/W	最大重传次数	设置值只支	持 0x1~0xE	
RE_TX_TIMES	15.12	FC/VV	(只针对增强型帧结构)			
				T=AUTO_RXACK	_TIME*Tsymb	
	11:0	R/W	接收ACK等待时间	建议设置值为:		
AUTO_RXACK_TIME	11.0	FX/VV	(只针对增强型帧结构)	(PREAMBLE	(bytes) +SFD	
				(bytes)) *8 + 25	i	

表 17-65 ACKCFG 寄存器说明

寄存器名称		FIFOPTR					
地址		0x4D					
复位值		0x0000					
位名称	位	位 读写 位说明 1 0					
FIFO0_WR_PTR	15:8 R FIFO 写指针 -						
FIFO0_RD_PTR	7:0	7:0 R FIFO 读指针 -					

表 17-66 FIFOPTR 寄存器说明

寄存器名称		LEN0RXADD					
地址		0x4E					
复位值		0x0003					
位名称	位 读写 位说明 1 0						
-	15:8						
		直接 FIFO 帧结构 8'h0:不额外接收					
LEN0_PKLENADD	7:0	R/W	芯片额外接收的 byte 数	8'h1:1 个 byte			
LENO_FREENADD	7.0	IN/VV	(LEN0_RXMODE='0'芯片自动	自动 8'h2:2 个 bytes			
			识别帧长接收模式下有效)				

表 17-67 LENORXADD 寄存器说明

寄存器名称		INVSFDTIME							
地址			0x4	1F					
复位值			0x00)20					
位名称	位	读写	位说明	1	0				
-	15:8	15:8							
			发现有效前导后若在	设定长度为 INVSFD_TIM	E * 8 bits,				
			INVSFD_TIME 设定长	其中 1bits 长度代表 1 个	数据速率符				
INVSFD_TIME	7:0	R/W	度内未检测到有效	号长度。					
INVSED_LIME	7.0	FX/VV	SFD,无效 SFD 中断	可依据通讯使用的前导、S	SFD 长度与				
			标志INVSFDDET_INT	接收设置的前导检测时间	综合考虑。				
			将置 '1 '。	(该寄存器适用于软件跳频等应用)					

表 17-68 INVSFDTIME 寄存器说明

寄存器名称	SFTRST0									
地址		0x60								
复位值		-								
位名称	位	读写	位说明	1	0					
SFTRST0	15:0	R/W	软件复位方式 0 (不可复位寄存器)	16'h55AA:软件 Others:无效操						

表 17-69 SFTRST0 寄存器说明

V1.5 318/352

寄存器名称	SFTRST1									
地址		0x61								
复位值		-								
位名称	位	读写	位说明	1	0					
SFTRST1	15:0	R/W	软件复位方式 1	16'h55AA:软件	复位					
51 18311	13.0	17///	(全芯片复位)	Others: 无效操	作					

表 17-70 SFTRST1 寄存器说明

寄存器名称		REGCHECK									
地址		0x6F									
复位值		0x0000									
位名称	位	读写	位说明	1	0						
-	15:8	15:8									
REGCHECK	7:0	R	校验寄存器	校验范围为寄存器等值,芯片以 byte 为异或处理,寄存器分验低 byte。 软件复位后 REGCI	g单位对写入值进行 元校验高 byte,后校						

表 17-71 REGCHECK 寄存器说明

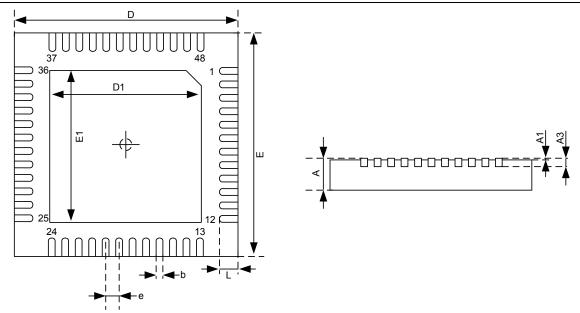

寄存器名称	FIFODATA									
地址		0x70								
复位值		-								
位名称	位	读写	位说明	1	0					
-	15:8	15:8								
FIFODATA	7:0	7:0 R/W FIFO 访问寄存器 FIFO 读写操作详见 10.3.3 章节								

表 17-72 FIFODATA 寄存器说明

第 18 章 封装尺寸图

18.1 封装尺寸图

标号	公制(mm)							
你与	MIN	NOM	MAX					
Α	0.50	0.55	0.60					
A1	0.00	0.02	0.05					
A3		0.152REF						
b	0.15	0.20	0.25					
D	5.90	6.00	6.10					
D1	4.45	4.55	4.65					
Е	5.90	6.00	6.10					
E1	4.45	4.55	4.65					
е		0.40BSC						
L	0.30	0.40	0.50					

图 18-1 QFN48 封装尺寸图

第 19 章 典型应用原理图

19.1 典型应用原理图

下面给出 HW3181 的典型应用原理图。

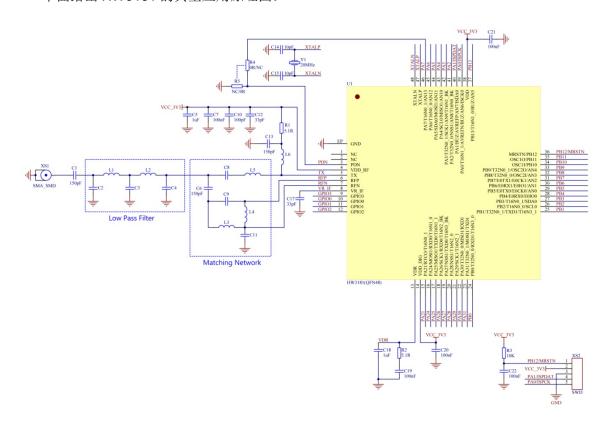


图 19-1 典型应用原理图

各频段的 RF 匹配元器件参数详见表 19-1 所示。

标号	L1,L2	C2,C4	СЗ	L5	C8	L3	L4	C9	C11	L6
315MHz	22nH	12pF	22pF	33nH	6.8pF	33nH	47nH	3.3pF	10pF	120nH
433MHz	18nH	6.8pF	12pF	15nH	6.8pF	22nH	47nH	3.3pF	6.8pF	47nH
779MHz	5.6nH	6.8pF	12pF	3.9nH	6.8pF	10nH	22nH	2.7pF	2.7pF	33nH
868MHz	4.7nH	6.8pF	12pF	4.7nH	5.6pF	8.2nH	10nH	2.7pF	4.7pF	22nH
915MHz	3.9nH	6.8pF	12pF	3.9nH	5.6pF	6.8nH	9.1nH	2.7pF	5.6pF	18nH

表 19-1 不同频率下的射频元件 BOM

V1.5

19.2 设计应用注意事项

- (1) 芯片中央的 EP 脚必须接地。
- (2) 芯片内部 RF 的电源是 VDD_RF (4 脚) 和 VDD_DIG (14 脚), MCU 的电源是 VDD (38 脚), 它们在内部是不连的, 所以都需要连接到 VCC_3V3 外部电源上。
- (3) RF 收发器的 POWER DOWN 模式使能输入引脚 PDN,可以连接 MCU 的一个通用 IO 口来控制(上图连接的是 PA7),如果 IO 口不够用,也可以直接接地(注意,接地后无法进入 POWER DOWN 模式)。由上图可知,焊接 R4,断开 R5 时,可以用 PA7 脚来控制 PDN。如果焊接 R5,断开 R4,则 RF 收发器无法进入 POWER DOWN 模式。

第 20 章 电气特性

20.1 MCU电气特性

20.1.1 最大标称值

参数	符号	条件	标称值	単位
电源电压	VDD	VSS=0V	-0.3 ~ 7.5	V
管脚输入电压	V _{IN}	VSS=0V	-0.3 ~ VDD + 0.3	V
管脚输出电压	V _{OUT}	VSS=0V	-0.3 ~ VDD + 0.3	V
VDD 管脚最大输入电流	I _{MAXVDD}	VDD=5.0V, 25℃	100	mA
VSS 管脚最大输出电流	I _{MAXVSS}	VDD=5.0V, 25℃	120	mA
芯片存储温度	T _{STG}	_	-55 ~ 125	$^{\circ}$ C

注 1: 上述最大标称值参数为 MCU 工作条件的极限参数范围,超出该范围,可能会导致 MCU 永久性物理损坏;

注 2: MCU 需在正常工作条件下,才能保证持续稳定运行,对 MCU 的正常工作条件,参见下面的表格所述。

20.1.2 MCU工作条件

参数	符号	工作条件	最小值	最大值	单位
MCU 工作温度	T _{OPR}	_	-40	85	${\mathbb C}$
MCU 工作电压	VDD	_	2.2	5.5	V
AHB 总线频率	F _{HCLK}	_	0	48	MHz
APB 总线频率	F _{PCLK}	_	0	48	MHz

20.1.3 MCU功能模块工作电压范围

参数	符号	工作温度	VDD 电压	备注
		2.2.5.5		正向参考电压为 VDD 或内部
ADC 工作由压	1/	40 . 95°C	2.2~5.5V	VREFP 1.8V
ADC 工作电压	V_{ADC}	-40 ~ 85℃	2.8~5.5V	正向参考电压为内部 VREFP
			2.0~3.3V	2.6V

20.1.4 MCU功耗参数

参数	符号	最小值	典型值	最大值	单位	工作条件
芯片供电电压	VDD	2.2	_	5.5	V	-40℃ ~85℃
芯片静态电流	I _{DD}	_	300	_	μA	25℃,上电复位,VDD = 5V,所有的 I/O 端口输入低电平,MRSTN=0。

V1.5 323/352

参数	符号	最小值	典型值	最大值	单位	工作条件
深度睡眠模式 下芯片电流	I _{PD1}	_	5	ı	μА	25℃, VDD = 5V, BOR 使能, WDT 不使能, RTC 不使能, ADC buffer 被bypass, 所有 I/O 端口输出固定电平, 无负载。
浅睡眠模式下芯片电流	I _{PD2}	_	1.2	_	mA	25℃, VDD = 5V, BOR 使能, WDT 不使能, RTC 不使能, ADC buffer 被bypass, 所有 I/O 端口输出固定电平, 无负载; 系统主时钟为内部 16MHz RC 时钟。
	I _{PD3}		1.4	1	mA	25℃,VDD = 5V, BOR 使能,WDT 不使能,RTC 不使能,ADC buffer 被bypass,所有 I/O 端口输出固定电平,无负载;系统主时钟为外部 16MHz HS 时钟。
正常运行模式芯片电流	I _{OP1}	_	3.5	Ι	mA	25℃,VDD = 5V,BOR 使能,WDT 使能,外设模 块均工作,所有 I/O 端口 输出固定电平,无负载, 7816 通讯时钟管脚,作为 普通 I/O,无时钟输出, ADC 使用内部 VREFP 作 为参考电压;系统主时钟 为内部 16MHz RC 时钟。
	I _{OP2}	_	4.3	_	mA	25℃,VDD = 5V,BOR 使能,WDT 使能,外设模 块均工作,所有 I/O 端口 输出固定电平,无负载, 7816 通讯时钟管脚,作为 普通 I/O,无时钟输出, ADC 使用内部 VREFP 作 为参考电压;系统主时钟 为外部 16MHz HS 时钟。

20.1.5 MCU功能模块功耗特性参数表

参数	符号	最小值	典型值	最大值	単位	工作条件
外部振荡器 XTAL 16MHz 电流	I _{XTAL}	_		_	mA	25℃,VDD = 5V
内部高速时钟 HRC 电流	I _{HRC}	_		_	mA	25℃, VDD = 5V
倍频时钟 PLL 电流	I _{PLL1}	_	0.14	_	mA	25 ℃,VDD = 5V,输出时钟频率为 32MHz
信妙的钾 PLL 电机	I _{PLL2}	_	0.2	_	mA	25 ℃,VDD = 5V,输出时 钟频率为 48MHz
BOR 模块电流	I_{BOR}	_	0.3	_	μA	25℃, VDD = 5V
LVD 模块电流	I_{LVD}	_	0.3	_	μA	25℃, VDD = 5V
WDT 模块电流	I _{WDT}	_	0.2	_	μA	25℃, VDD = 5V
	I _{ADC1}	-	850	_	μΑ	25℃,VDD = 5V,ADC 转 换时钟频率为 500KHz,内 部 VREFP 作为正向参考电 压 (VREF_EN=1, VRBUF_EN=1)
ADC 模块电流	I _{ADC2}	_	600	_	μA	25℃, VDD = 5V, ADC 转 换时钟频率为 500KHz, VDD 作为正向参考电压 (VREF_EN=1, VRBUF_EN=0)
VREFP 模块电流	I _{VREFP}	_	170	_	μA	25℃, VDD = 5V
VREF BUF 模块电 流	I _{VRBUF}	_	250	_	μA	25℃, VDD = 5V
RTC 模块电流	I _{RTC}	_	0.5	_	μA	25℃, VDD = 5V, RTC 时 钟源为外部 32.768KHz 振 荡器, 精确计时模式
T16N 模块电流	I _{T16N}	_	80	_	μA	25℃,VDD = 5V ,定时器 模式,计数时钟为 16MHz
T32N 模块电流	I _{T32N}	_	80	_	μA	25 ℃,VDD = 5V,定时器 模式,计数时钟为 16MHz
UART 模块电流	I _{UART}	_	100	_	μA	25 ℃,VDD = 5V,通讯波 特率为 9600bps
EUART 模块电流	I _{EUART}	_	100	_	μA	25℃,VDD = 5V ,通讯波 特率为 9600bps

参数	符号	最小值	典型值	最大值	单位	工作条件
SPI 模块电流	I _{SPI}	-	50	-	μΑ	25℃, VDD = 5V, 主控模式, 通讯速率为 1MHz, 数据包发送间隔为 32 个通讯时钟周期
I2C 模块电流	I _{I2C}	-	50	-	μΑ	25℃, VDD = 5V, 主控模式, 通讯速率为 400KHz, 数据包传输间隔为 15 个通讯时钟周期
FLASH 编程电流	I _{PROG}	_	_	4	mA	40. 05°C - VDD - 5V
FLASH 擦除电流	I _{ERAS}	_	_	4	mA	-40~85℃,VDD = 5V

20.1.6 MCU输入输出端口特性

◆ 输入端口特性

芯片工作温度范围: -40℃ ~85℃										
参数	符号	最小值	典型值	最大值	単位	测试条件				
I/O 端口输入高电平	V_{IH1}	0.8VDD	1	VDD	V					
I/O 端口输入低电平	V_{IL1}	VSS	1	0.2VDD	V	2.2V≤VDD≤5.5V				
主复位信号,输入高电平	V_{IH}	0.8VDD	_	VDD	V					
主复位信号,输入低电平	V _{IL}	VSS	_	0.2VDD	V					
IO 端口施密特迟滞窗口	V _{HYST}	_	0.8	_	V	VDD = 5.0V				
I/O 端口输入漏电流	I _{IL}	_		1	μΑ	VDD = 5.0V (端口高阻状态)				
IO 端口弱上拉电阻	R _{WPU}	35	45	60	kΩ	VDD = 5.0V Vpin = VSS				
IO 端口弱下拉电阻	R _{WPD}	25	35	50	kΩ	VDD = 5.0V Vpin = VDD				

◆ 输出端口(PA0~PA5, PA14~PA31, PB0~PB13)特性

芯片工作温度范围: -40℃ ~85℃										
参数	符号	最小值	典型值	最大值	单位	测试条件				
I/O 端口(普通驱动)输出 高电平	I _{OH1}	-5.0	_	_	mΛ	VDD = 5.0V				
I/O 端口(大电流驱动)输 出高电平	I _{OH2}	-8.0	_	_	mA	V _{OH} = 4.6V				
I/O 端口(普通驱动)输出 低电平	I _{OL1}	6	_	_	mA	VDD = 5.0V				
I/O 端口(大电流驱动)输	I _{OL2}	10	_	_		$V_{OL} = 0.4V$				

◆ 输出端口(PA6~PA13)特性

芯片工作温度范围: -40℃ ~85℃										
参数	符号	最小值	典型值	最大值	单位	测试条件				
I/O 端口(普通驱动)输出 高电平	I _{OH1}	-3.5	_	_	mΛ	VDD = 5.0V				
I/O 端口(大电流驱动)输 出高电平	I _{OH2}	-4.5	-	_	mA	V _{OH} = 4.6V				
I/O 端口(普通驱动)输出 低电平	I _{OL1}	10	1	_	mA	VDD = 5.0V				
I/O 端口(大电流驱动)输 出低电平	I _{OL2}	40	_	_	IIIA	V _{OL} = 0.4V				

20.1.7 系统时钟规格

参数	符号	最小值	典型值	最大值	单位	测试条件
系统时钟频率	Fosc	_	_	48M	Hz	
系统时钟周期	Tosc	20.8	_	_	ns	
机器周期	T _{inst}	41.6	_	_	ns	
外部时钟高电平和 低电平时间	T _{OSL} , T _{OSH}	20	_	_	ns	2.2V≤VDD≤5.5V
外部时钟边沿上升 和下降时间	T _{OSR} , T _{OSF}			8	ns	

20.1.8 ADC模块特性

参数名称	符号	最小值	典型值	最大值	单位	测试条件
分辨率	RES	_	_	12	bit	
参考电压范围	V_{ADVREF}	1.8	_	VDD	>	
模拟电压输入范围	V_{IN}	VSS	_	V_{ADVREF}	٧	
输入电容	C_{IN}	_	40		рF	
模拟通道推荐输入电阻	R_{IN}	_	_	10k	Ω	见备注
AD 转换时钟周期	T_{AD1}	1	_		μs	
AD 积铁时 拼向别	T_{AD2}	0.5	_	_	μs	
AD 转换时间(不包括采 样时间)	T_{CONV}	_	14	ı	T_{AD}	
差分线性度	DNL	_	±1	±2	LSB	-40℃
失调误差	V _{OFFSET}	_	±2	±4	LSB	~ 85 ℃,负参 考电压为外

			部 VREFN,
			ADC 时钟频
			率为 1MHz

注 1: 该参数均为设计规格,设计条件为-40℃~85℃。

注 2: T_{AD1} 为 ADC 使用内部 VREFP 作为参考电压时的 AD 转换时钟周期;

T_{AD2} 为 ADC 使用其工作电压或外部 AVREFP 作为参考电压时的 AD 转换时钟周期。

◆ ADC 转换时钟源选择

A/D 时钟源	系统时钟工作频率(Hz) (VREFP=2'b01 或 2'b10,使用内部 VREFP 作为正向参考电压)							
选择	48M	32M	16M	4M				
Fpclk	不推荐使用	不推荐使用	不推荐使用	不推荐使用				
FPCLK /2	不推荐使用	不推荐使用	不推荐使用	不推荐使用				
FPCLK /4	不推荐使用	不推荐使用	不推荐使用	T _{ADCLK} = 1µs				
FPCLK /8	不推荐使用	不推荐使用	不推荐使用	T _{ADCLK} = 2µs				
FPCLK /16	不推荐使用	不推荐使用	T _{ADCLK} = 1µs	T _{ADCLK} = 4µs				
FPCLK /32	不推荐使用	T _{ADCLK} = 1µs	T _{ADCLK} = 2µs	T _{ADCLK} = 8µs				
FPCLK /64	T _{ADCLK} = 1.3µs	T _{ADCLK} = 2µs	T _{ADCLK} = 4µs	T _{ADCLK} = 16µs				
FPCLK /256	T _{ADCLK} = 5.3µs	T _{ADCLK} = 8µs	T _{ADCLK} = 16µs	T _{ADCLK} = 64µs				
FLRC	T _{ADCLK} = 31µs	T _{ADCLK} = 31µs	T _{ADCLK} = 31µs	T _{ADCLK} = 31µs				

A/D 时钟源	系统时钟工作频率(Hz)							
选择	(VREFP=2'b00 或 2'b11,使用 VDD,或外部 AVREFP 作为正向参考电压)							
心 拌	48M	32M	16M	4M				
Fpclk	不推荐使用	不推荐使用	不推荐使用	不推荐使用				
FPCLK /2	不推荐使用	不推荐使用	不推荐使用	$T_{ADCLK} = 0.5 \mu s$				
FPCLK /4	不推荐使用	不推荐使用	不推荐使用	T _{ADCLK} = 1µs				
FPCLK /8	不推荐使用	不推荐使用	T _{ADCLK} = 0.5µs	T _{ADCLK} = 2µs				
FPCLK /16	不推荐使用	T _{ADCLK} = 0.5µs	T _{ADCLK} = 1µs	T _{ADCLK} = 4µs				
FPCLK /32	$T_{ADCLK} = 0.67 \mu s$	T _{ADCLK} = 1µs	T _{ADCLK} = 2µs	T _{ADCLK} = 8µs				
FPCLK /64	T _{ADCLK} = 1.3µs	T _{ADCLK} = 2µs	T _{ADCLK} = 4µs	T _{ADCLK} = 16µs				
FPCLK /256	T _{ADCLK} = 5.3µs	T _{ADCLK} = 8µs	T _{ADCLK} = 16µs	T _{ADCLK} = 64µs				
FLRC	T _{ADCLK} = 31µs	T _{ADCLK} = 31µs	T _{ADCLK} = 31µs	T _{ADCLK} = 31µs				

◆ ADC 内部参考电压特性

参数	符号	最小值	典型值	最大值	単位	测试条件
ADO to the TVDEE	V_{REF1}	1.782	1.8	1.818	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	25°C \/DD-5\/
ADC 内部参考电压 VREF	V_{REF2}	2.574	2.6	2.626	V	25℃,VDD=5V

V1.5 328/352

20.1.9 内部时钟源特性

参数	符号	最小值	典型值	最大值	単位	测试条件
HRC 时钟频率		15.84	16	16.16	MHz	25℃,
	.	13.04	10	10.10	1011 12	VDD=2.2V~5.5V
	F _{HRC}	15.68 16	16.32	MHz	-40℃~85℃,	
			10	10.32	IVII IZ	VDD=2.2V~5.5V
HRC 起振时间	T _{HRC}	_	30	_	μ S	见备注
		28.8	32	25.0	KHz	25℃,
LRC 时钟频率	_	20.0	32	35.2	KIIZ	VDD=2.2V~5.5V
LRU 的 钾 频率	F _{LRC}	10.0	32	51.2	KHz	-40℃~85℃,
		12.8	32	31.2	KΠZ	VDD=2.2V~5.5V
LRC 起振时间	T _{LRC}	_	800	_	μ S	见备注

注: T_{HRC} 和 T_{LRC} 均为设计规格,设计条件为-40℃~85℃。

20.1.10 PLL锁相环特性

	参数	符号	最小值	典型值	最大值	单位	测试条件	
- 1 61 NE	PLL 输入时钟频率	F _{PLLI1}	25	32	38	KHz	-40~85℃	
时钟源	PLL 倍频输出时钟频率	F _{PLLO1}	25.6	32.768	38.912	MHz		
选择为 32KHz	PLL 信妙制 山内 伊妙学	F _{PLLO2}	38.4	49.152	58.368	IVIITIZ		
OZINIZ	PLL 锁频时间	T _{LOCK1}	_	_	120	μ s	见备注	
e LALNE	PLL 输入时钟频率	F _{PLLI2}	3.2	4	4.8	MHz		
时钟源 选择为	PLL 倍频输出时钟频率	F _{PLLO3}	25.6	32	38.4	MHz	-40~85℃	
选择为 4MHz	FLL 百妙曲正的 特妙学	F _{PLLO4}	38.4	48	57.6	IVI∏Z		
7101112	PLL 锁频时间	T _{LOCK2}	_	_	2.4	ms	见备注	

注: PLL 的锁频时间 T_{LOCK1} 和 T_{LOCK2} 均为设计规格,设计条件为-40~85℃。

20.1.11 BOR模块特性

◆ BOR 模块特性表 1 (BOR 档位由配置字控制位 CFG_BORV (CFG_WORD0<9:8>) 设置)

CFG_BORV<1:0>	最小值	典型值	最大值	单位	测试条件		
00	3.6	3.7	3.8	V			
01	2.4	2.5	2.6	V	-40~85℃		
10	2.0	2.1	2.38	V			
11	_	_	_	V			

V1.5 329/352

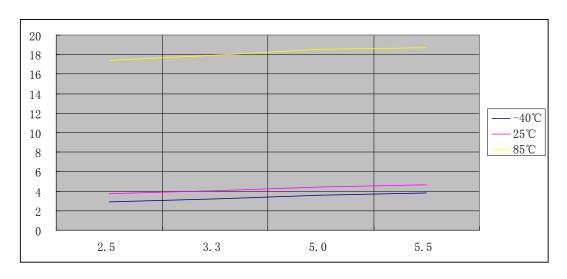
注: 当 CFG_BORV<1:0>=11 时,BOR 电压点由寄存器 SCU_SOFTCFG 的 BORV<3:0>进行设置,具体见该寄存器的描述。

◆ BOR 模块特性表 2(BOR 档位由寄存器控制位 BORV(SCU_SOFTCFG<3:0>)设置)

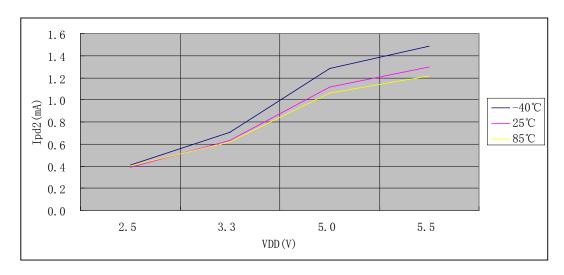
BORV<3:0>	最小值	典型值	最大值	単位	测试条件
0000	1.65	1.7	2.38	V	
0001	1.9	2.0	2.38	V	
0010	2.0	2.1	2.38	V	
0011	2.1	2.2	2.38	V	
0100	2.2	2.3	2.4	V	
0101	2.3	2.4	2.5	V	
0110	2.4	2.5	2.6	V	
0111	2.5	2.6	2.7	V	-40~85℃
1000	2.7	2.8	2.9	V	-40~65 C
1001	2.9	3.0	3.1	V	
1010	3.0	3.1	3.2	V	
1011	3.2	3.3	3.4	V	
1100	3.5	3.6	3.7	V	
1101	3.6	3.7	3.8	V	
1110	10 3.9	4.0	4.1	V	
1111	4.2	4.3	4.4	V	

20.1.12 LVD模块特性表

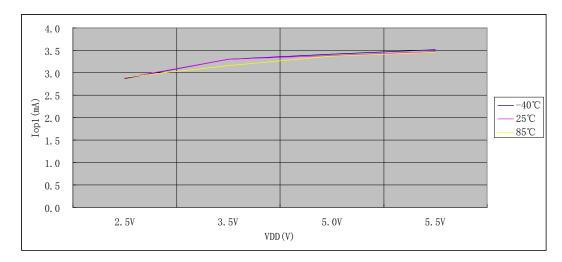
LVD_VS<3:0>		最小值	典型值	最大值	单位	测试条件
	0000	1.9	2.0	2.1	V	
	0001	2.0	2.1	2.2	V	
	0010	2.1	2.2	2.3	V	
	0011	2.3	2.4	2.5	V	
VDD 下降,	0100	2.5	2.6	2.7	V	
LVDO 低电压	0101	2.7	2.8	2.9	V	-40~85℃
状态标志置 1	0110	2.9	3.0	3.1	V	
	0111	3.5	3.6	3.7	V	
	1000	3.9	4.0	4.1	V	
	1001	4.5	4.6	4.7	V	
	1010	2.2	2.3	2.4	V	
LVD 电压检测迟	滞窗口	_	40	80	mV	-40~85℃

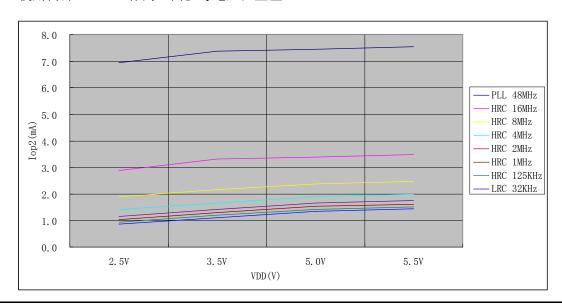


20.2 MCU 参数特性图


本节中所列图示均为抽样测试,仅作为设计参考之用。其中部分图示中所列的数据已超出指 定的操作范围,此类信息也仅供参考,芯片只保证在指定的范围内正常工作。

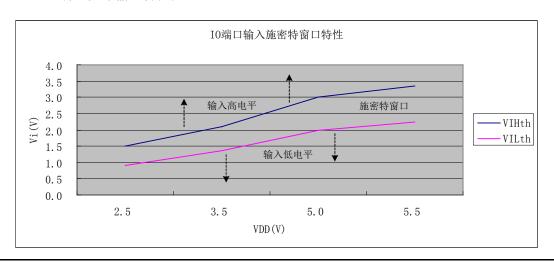
20.2.1 MCU功耗特性


◆ MCU 深度睡眠模式电流随电压-温度变化特性图(WDT,BOR 使能,RTC 不使能,ADC buffer 被 bypass,所有 I/O 端口输出固定电平,无负载)

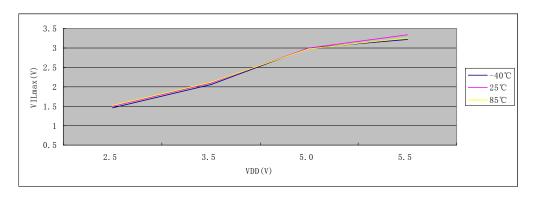

◆ MCU 浅睡眠模式电流随电压-温度变化特性图(WDT,BOR 使能,RTC 不使能,ADC buffer 被 bypass,所有 I/O 端口输出固定电平,无负载;系统主时钟为内部 HRC 16MHz 时钟)

◆ MCU 运行模式电流随电压-温度变化特性图(WDT,BOR 使能,外设模块均工作,所有 I/O 端口输出固定电平,无负载,7816 通讯时钟管脚作为普通 I/O,无时钟输出,ADC 使用内部 VREFP 作为正向参考电压;系统主时钟为内部 HRC 16MHz 时钟)

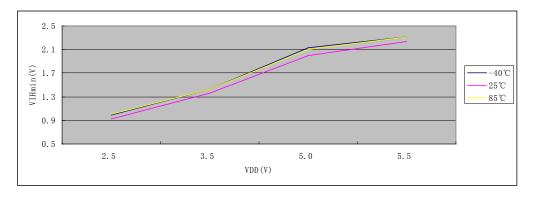
◆ 芯片运行模式电流随电压-系统时钟频率变化特性图(WDT, BOR 使能, 外设模块均工作, 所有 I/O 端口输出固定电平, 无负载, 7816 通讯时钟管脚作为普通 I/O, 无时钟输出, ADC 使用内部 VREFP 作为正向参考电压; 室温 25℃)



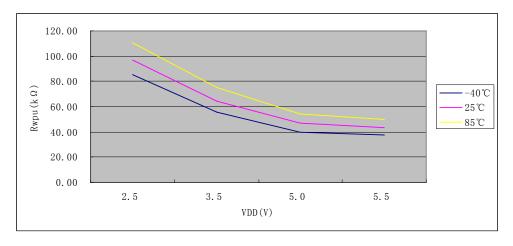
注:系统时钟为 PLL 48MHz 时,PLL 的输入时钟源为内部 HRC 时钟。

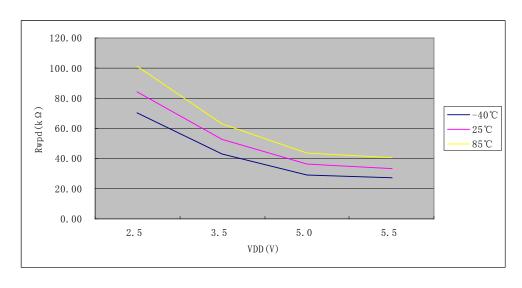

20. 2. 2 芯片IO端口输入特性

◆ I/O 端口信号输入特性图 (室温 25°C)

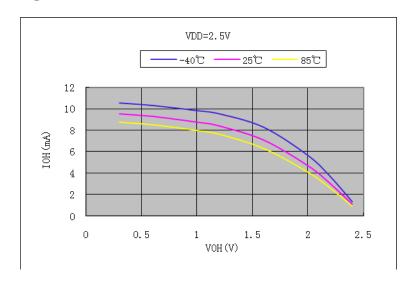


- 注 1: VIHth 为施密特窗口的上阈值电平,大于该阈值的输入电平为高;
- 注 2: VILth 为施密特窗口的下阈值电平,小于该阈值的输入电平为低;
- 注 3: VIHth 和 VILth 之间为施密特窗口,在窗口内的输入电平不确定,可能为高或低。

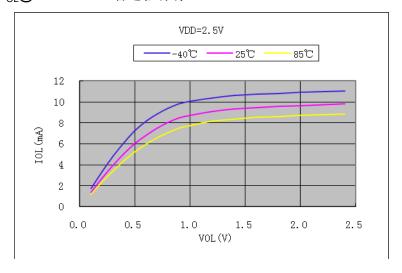

◆ I/O 端口最大输入低电平随电压-温度变化特性图


◆ I/O 端口最小输入高电平随电压-温度变化特性图

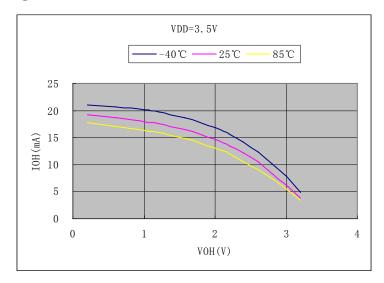
◆ I/O 端口弱上拉电阻随电压-温度变化特性图



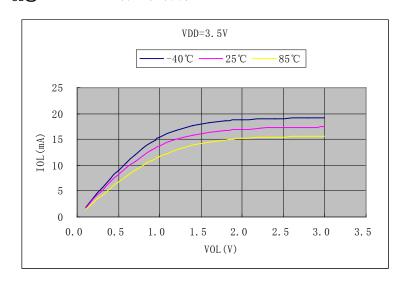
◆ I/O 端口弱下拉电阻随电压-温度变化特性图


20.2.3 芯片IO端口输出特性(普通驱动,PA6~PA13端口除外)

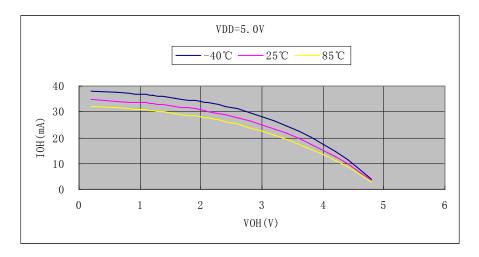
◆ V_{OH} vs I_{OH}@VDD=2.5V(普通驱动端口)



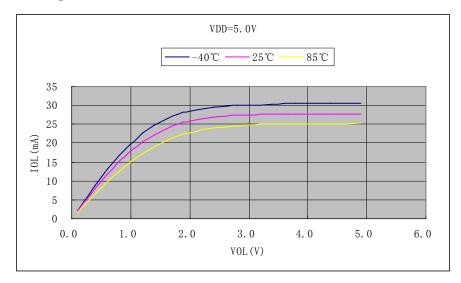
V1.5


◆ V_{oL} vs I_{oL}@VDD=2.5V(普通驱动端口)

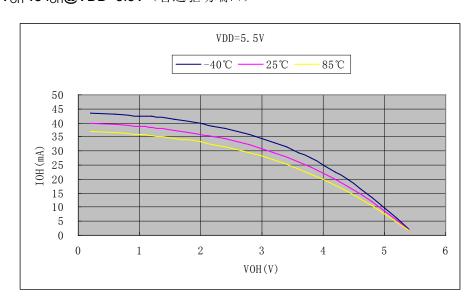
◆ V_{OH} vs I_{OH}@VDD=3.5V(普通驱动端口)

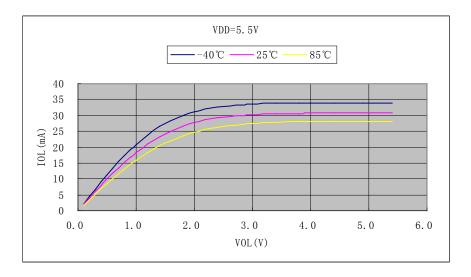


◆ V_{OL} vs I_{OL}@VDD=3.5V(普通驱动端口)

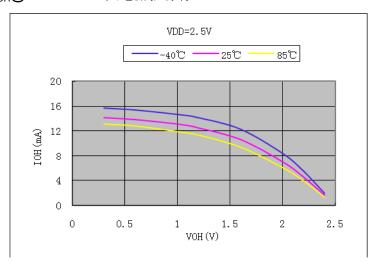


V1.5 335/352

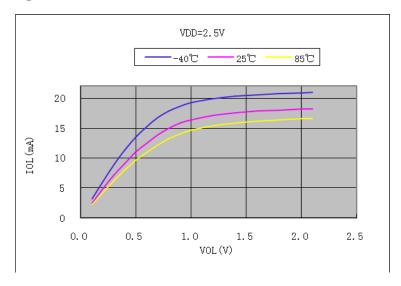

◆ V_{OH} vs I_{OH}@VDD=5.0V(普通驱动端口)


◆ V_{OL} vs I_{OL}@VDD=5.0V(普通驱动端口)

◆ V_{OH} vs I_{OH}@VDD=5.5V(普通驱动端口)

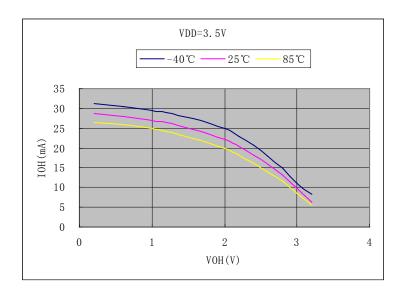


◆ V_{OL} vs I_{OL}@VDD=5.5V(普通驱动端口)

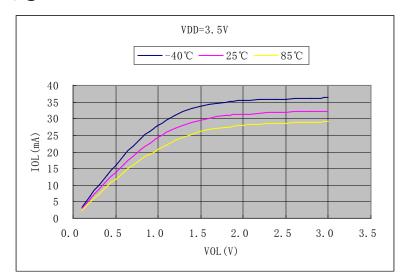


20.2.4 芯片IO端口输出特性(大电流驱动, PA6~PA13端口除外)

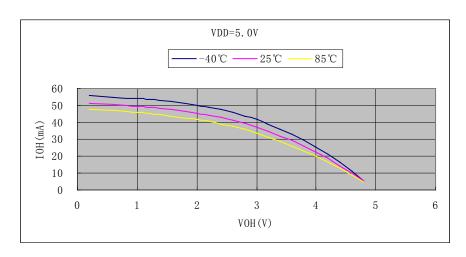
◆ V_{OH} vs I_{OH}@VDD=2.5V(大电流驱动端口)



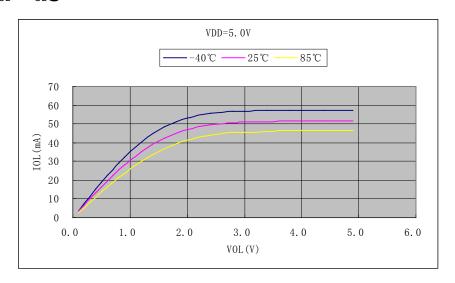
◆ V_{OL} vs I_{OL}@VDD=2.5V(大电流驱动端口)



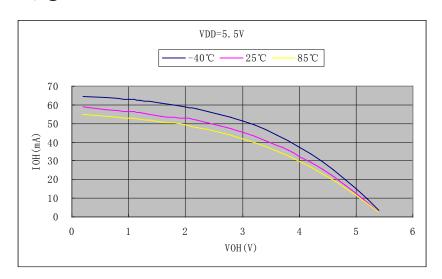
V1.5 337/352


V_{OH} vs I_{OH}@VDD=3.5V(大电流驱动端口)

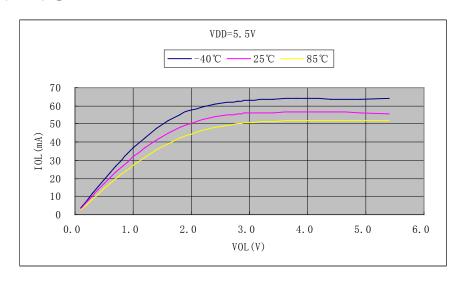
Vol vs IoL@VDD=3.5V(大电流驱动端口)



V_{OH} vs I_{OH}@VDD=5.0V(大电流驱动端口)

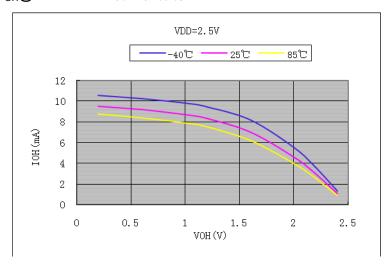


338/352

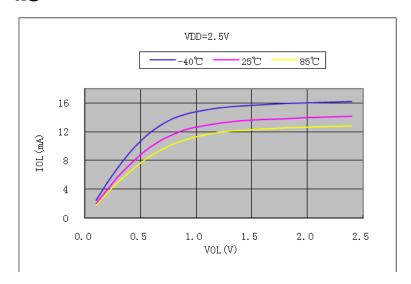

◆ V_{OL} vs I_{OL}@VDD=5.0V(大电流驱动端口)

◆ V_{OH} vs I_{OH}@VDD=5.5V(大电流驱动端口)

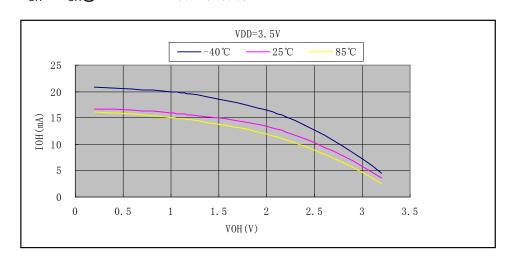
◆ V_{OL} vs I_{OL}@VDD=5.5V(大电流驱动端口)


V1.5

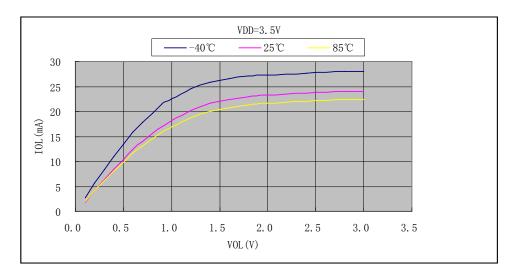
339/352



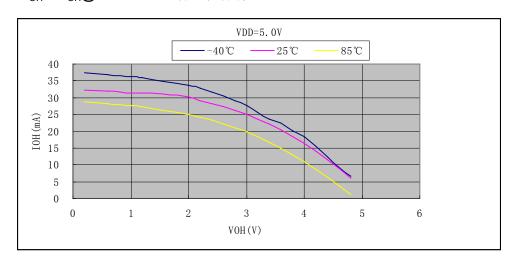
20. 2. 5 芯片IO端口输出特性(普通驱动, PA6~PA13端口)


◆ V_{OH} vs I_{OH}@VDD=2.5V(普通驱动端口)

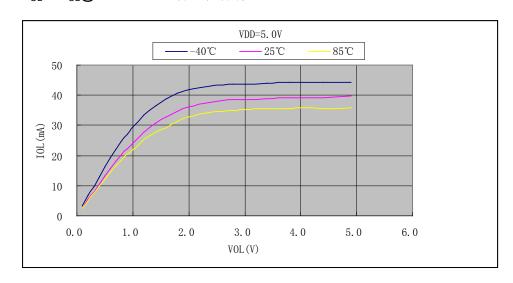
◆ V_{OL} vs I_{OL}@VDD=2.5V(普通驱动端口)

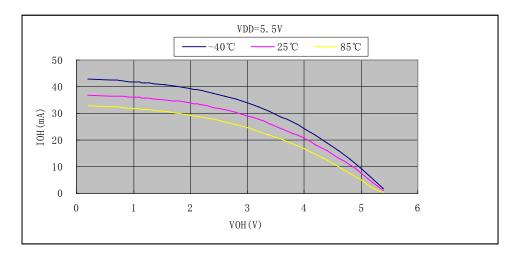


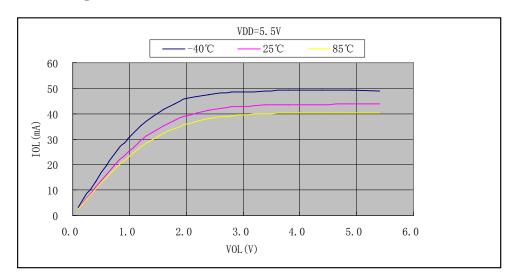
◆ V_{OH} vs I_{OH}@VDD=3.5V(普通驱动端口)



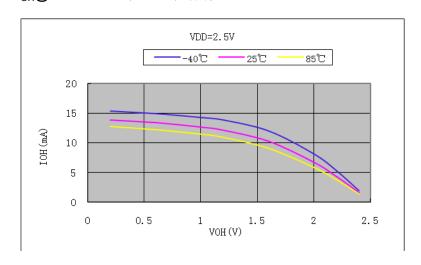
340/352


◆ V_{OL} vs I_{OL}@VDD=3.5V(普通驱动端口)

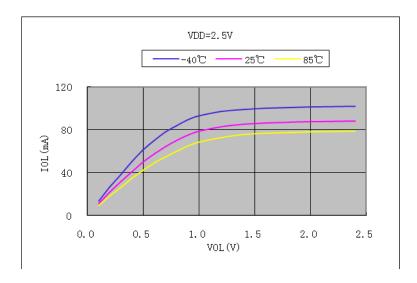

◆ V_{OH} vs I_{OH}@VDD=5.0V(普通驱动端口)


◆ V_{OL} vs I_{OL}@VDD=5.0V(普通驱动端口)

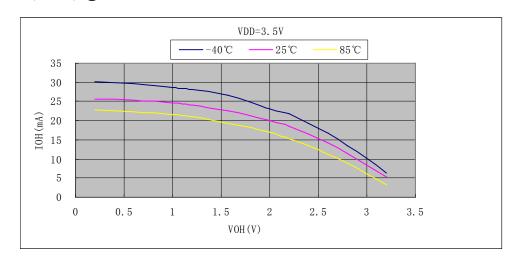
◆ V_{OH} vs I_{OH}@VDD=5.5V(普通驱动端口)



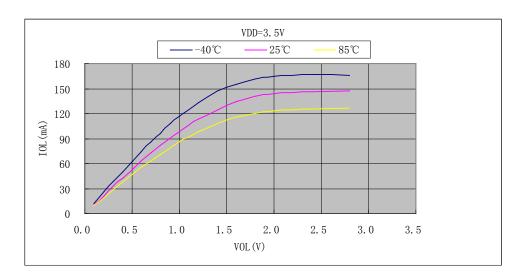
◆ V_{OL} vs I_{OL}@VDD=5.5V(普通驱动端口)


20. 2. 6 芯片IO端口输出特性(大电流驱动, PA6~PA13端口)

◆ V_{OH} vs I_{OH}@VDD=2.5V(大电流驱动端口)



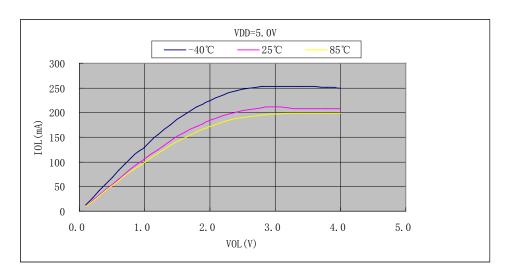
V1.5 342/352


◆ V_{OL} vs I_{OL}@VDD=2.5V(大电流驱动端口)

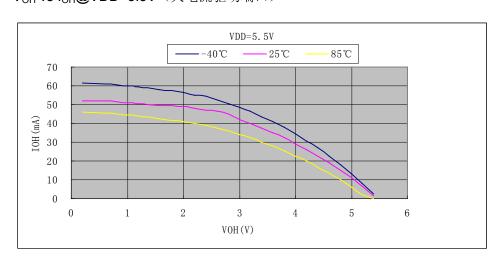
◆ V_{OH} vs I_{OH}@VDD=3.5V(大电流驱动端口)



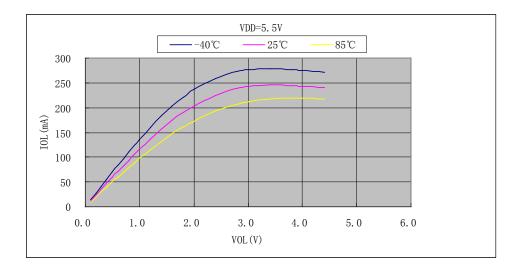
◆ V_{OL} vs I_{OL}@VDD=3.5V(大电流驱动端口)



V1.5


◆ V_{OH} vs I_{OH}@VDD=5.0V(大电流驱动端口)

◆ V_{OL} vs I_{OL}@VDD=5.0V(大电流驱动端口)



◆ V_{OH} vs I_{OH}@VDD=5.5V (大电流驱动端口)

◆ V_{OL} vs I_{OL}@VDD=5.5V(大电流驱动端口)

20.3 RF收发器电气特性

20.3.1 功耗参数

参数	符号	条件	最小值	典型值	最大值	单位
省电模式功耗	POWER DOWN	所有模块关闭	-	100	1	nA
	DEEP SLEEP	低功耗数字接口打开(保持寄存 器的值),其它模块关闭	-	3	-	μА
	IDLE	数字 LDO 工作在正常模式,晶 振使能,数字电路有时钟	-	2	-	mA
接收模式功耗	RX	码率 10kbps,载波 433MHz	10	18	-	mA
发送模式功耗	TX1	+20 dBm 发射功率	-	90	-	mA
	TX2	+10 dBm 发射功率	-	30	-	mA

表 20-1 芯片功耗

20.3.2 接收机 (RX) 参数

参数	符号	条件	最小值	典型值	最大值	単位
接收频率范围	FSYNTH1	20MHz 晶振	235	-	522	MHz
按收	FSYNTH2	20MHz 晶振	700	-	1045	MHz
		(BER<0.1%,10kbps,				
	RX_1	dev=25kHz,G2FSK,	-	-114	-	dBm
】 灵敏度		BT=0.5,Frq=433MHz)				
火蚁浸		(BER<0.1%,50kbps,				
	RX_2	dev=25kHz,G2FSK,	-	-109	-	dBm
		BT=0.5,Frq=433MHz)				
接收最大信号	PMAX_IN	-	1	>17	1	dBm
接收带宽	BW	-	10	-	200	kHz
输入三阶交调	IIP3RX			-20		dBm
(IIP3)	IIPSKA	-	-	-20	1	иын
RX 输入阻抗(未				124.85-		
做匹配时, RX 的	RIN-RX	433MHz	-	85.55j	-	Ω
双端输入)				65.55j		
RSSI 分辨率	RES-RSSI	-	-	±3	ı	dB
\pm 1-Ch		要求参考信号灵敏度				
邻道抑制	C/I1-CH	3db 以上,码速	-	-41	-	dB
(BER <0.1%)		10kbps,高斯频率偏移				
±2-Ch		键控(G2FSK),频偏				
邻道抑制	C/I2-CH	25kHz,基带滤波	-	-44	-	dB
(BER<0.1%)		(BT=0.5),带宽 70k,				

V1.5

	C/I3-CH	通道间隔 200K,干扰 源为连续载波信号	-	-47	-	dB
(BER <0.1%)	C/I4-CH		-	-50	-	dB
阻塞(1MHz)	1M BLOCK	要求参考信号灵敏度	-	-55	-	dB
阻塞(10MHz)	10M BLOCK	3db 以上,码速 10kbps,高斯频率偏移 键控(G2FSK),频偏 25kHz,基带滤波 (BT=0.5),带宽 70k, 通道间隔 200K,干扰 源为连续载波信号	-	-65	-	dB
镜相抑制	ImREJ	中频 IF=350kHz	-	-45	-	dB
同频率干扰	CoREJ	-	-	9	-	dB

表 20-2 接收机 (RX) 特性

20.3.3 发射机 (TX) 参数

参数	符号	条件	最小值	典型值	最大值	単位
发射机频率范	FSYNTH1	20MHz 晶振	235	-	522	MHz
围	FSYNTH2	20MHz 晶振	700	-	1045	MHz
GFSK 模式数 据比特率	DR GFSK	-	1	-	100	kbps
调制频率偏差	Δf	-	-50	-	50	kHz
调制频偏步长	ΔfRES	-	-	305@20MHz 396@26MHz	-	Hz
输出功率范围	PTX		-20	-	+20	dBm
TX RFPA 输出 步长	RFPA_OUT	-	-	3	-	dBm
TX RF 输出功率随温度变化	PRF_TEMP	-25°C ~ +85°C	-	2	-	dB
TX RF 输出功 率随频率变化	PRF_FREQ	任何的频段测量	-	1	-	dB
发射调制滤波	BT	高斯滤波带宽时间积	0.5	-	1	
杂散辐射	POB-TX1	Pout=10dBm, Frequencies <1 GHz	-	-	-37	dBm
万√月又→田分 リ	POB-TX2	1~12.75 GHz, 除谐波以外	-	-	-37	dBm
谐波	P2 HARM	利用参考设计最大输	-	-	-30	dBm
泊 仮	P3 HARM	出功率 (+17dBm)发射	-	-	-30	dBm

	匹配网络和滤波,输出		
	功率线性递减		

说明:

- 1. 所有规格保证生产测试,特殊情况另有说明。
- 2. 资格认证。

表 20-3 发射机 (TX) 特性

20.3.4 频率合成器参数

参数	符号	条件	最小值	典型值	最大值	单位
频率合成	FSYNTH1	20MHz 晶振	235	-	522	MHz
器的频率 范围	FSYNTH2	20MHz 晶振	700	-	1045	MHz
频率合成 器分辨率	FRES	-	2.2@20MHz 2.86@26MHz	-	4.4@20MHz 5.7@26MHz	Hz
参考频率	fREF	20MHz 或者 26MHz	-	20/26	-	MHz
频率合成 器频率容 差	ERR_FREQ	其容差值主要由晶体 决定	-	±20	-	ppm
参考频率输入电平	fREF_LV	当使用参考频率替代 晶体时,输入信号峰峰 值(Vpp)	0.4	-	-	>
频率合成 器建立时 间	tLOCK	XOSC 运行稳定后, PLL 的建立时间(包括 VCO 频率校正时间)	30	60	80	μs
		F = 10 kHz@20MHz F = 10 kHz@26MHz	-	-95	-	dBc/Hz
扣於陽書	1 (£N.4)	F = 100 kHz@20MHz F = 100 kHz@26MHz	-	-98	-	dBc/Hz
相位噪声	L (fM)	F = 1 MHz@20MHz F = 1 MHz@26MHz		-118	-	dBc/Hz
		F = 10 MHz@20MHz F = 10 MHz@26MHz	-	-130	-	dBc/Hz

说明:

- 1. 所有规格保证生产测试,特殊情况另有说明。
- 2. 资格认证。

表 20-4 频率合成器特性

20.3.5 振荡器参数

参数	符号	条件	最小值	典型值	最大值	单位
校准频率	FREQ	1	31.94	32	32.05	kHz
校准之后的频率 精度	RES_FREQ	理论值	-	-	±1	%
温度系数	FAC_TEMP	在校准之后当供给 电压改变时的频率 漂移	-	+0.6	-	% / °C
供给电压系数	FAC_V	在校准之后当供给 电压改变时的频率 漂移	-	+5	-	% / V
初始校准时间	CAL_TIME	当 RC 振荡器开启 时,尽管晶体振荡 器在工作,校准还 是在后台持续的进 行。	-	3	-	ms
唤起周期	TIME_START	可根据寄存器配置 做相应的调整	-	-	-	S

说明:

- 1. 所有规格保证生产测试,特殊情况另有说明。
- 2. 资格认证。

表 20-5 低功耗 RC 振荡器特性

参数	符号	条件	最小值	典型值	最大值	单位
晶体频率	CRY_FRE		-	20/26	-	MHz
容差	ERR_FREQ	这是总容差,包括 初始容差、老化和 温度依赖,可接受 的晶体容差决定于 RF 频率和信道空 间/带宽	-	±20	-	ppm
ESR	ESR	-	-	-	100	Ω
开始时间	T_START	-	-	300	-	μs

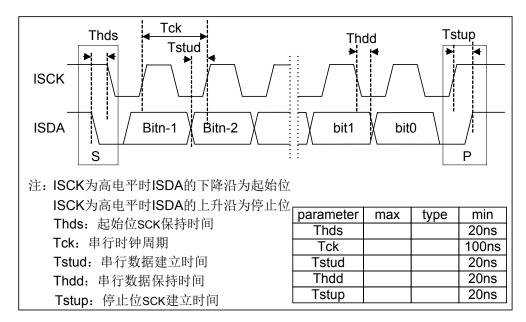
说明:

- 1. 所有规格保证生产测试,特殊情况另有说明。
- 2. 资格认证。

表 20-6 石英晶体振荡器特性

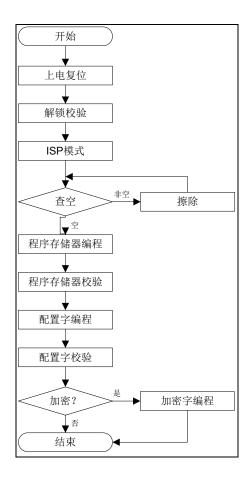
第 21 章 编程调试接口

21.1 概述


为方便应用程序及实际系统调试,芯片内部集成 ISP 在线编程接口和 SWD 串行调试接口,通过上海东软载波微电子有限公司授权的 ISP 编程器、SWD 调试器可实现芯片在线编程、仿真调试功能。

芯片 ISP 和 SWD 功能模块共用 5 线接口配置,即电源线 VDD、地线 VSS、复位线 MRSTN、时钟线 ISCK 和数据线 ISDA。

21.2 ISP编程接口


21. 2. 1 通信协议

ISP 接口协议采用两线制半双工通信协议,每个信息块包含 n 个数据信息位,以及起始位和停止位。烧录器为主控设备,ISCK 时钟由烧录器发送,芯片为受控设备。如下图示:

ISP 在线编程接口有两组端口可用,即 PA0/PA1 和 PA14/PA15,通过其中一组进入 ISP 模式后,另一组 ISP 端口被自动关闭。(注: PA14 和 PA15 在 HW3181 中未引出,不可用)

21.2.2 操作流程

21.3 SWD调试接口

21.3.1 概述

SWD 是 Cortex-M0 内核自带的串行调试接口,与 ARM 的 CoreSight 调试技术兼容。

芯片通过 SWD 调试器完成调试程序(需通过配置字控制位 CFG_DEBUG,使能调试模式)下载,然后重新上电,芯片的 SWDIO (复用为 ISDA)和 SWCLK (复用为 ISCK)端口功能可用。

SWCLK: 串行时钟输入端口,提供 SWD 串行通讯时钟。

SWDIO: 串行数据输入/输出端口。

两个 SWD 端口, PA0/PA1 和 PA14/PA15, 可通过芯片配置字 CFG_WORD0 的 DEBUG_S 和 CFG_DEBUG 控制位来设定。

当 CFG_DEBUG 控制位设定为 10,使能调试模式时,PA0/PA1 和 PA14/PA15 被强制为 SWD 调试端口,其他外设资源无法使用该端口。若 DEBUG_S 控制位为 0,选择 PA14/PA15 调试口;若 DEBUG_S 控制位为 1,选择 PA0/PA1 调试口。(注: PA14 和 PA15 在 HW3181 中未引出,不可用)

21. 3. 2 SWD特性

SWD 调试功能可分为侵入式调试和非侵入式调试两部分。

侵入式调试

停机

单步执行

硬件断点(支持4个硬件断点)

软件断点(支持 BKPT 指令)

修改程序指针 PC 值

数据观察点 DWT

(Data Watchpoint and Trace, 只支持 Watchpoint 功能, 不支持 Trace 功能)

内部寄存器和 RAM 存储器的读写访问操作

矢量捕捉(包括 Reset 和 HardFault 异常的捕捉)

非侵入式调试

程序指针 PC 值采样